Revealing Paths of Relevant Information in Web Graphs

  • Georgios Kouzas
  • Vassileios Kolias
  • Ioannis Anagnostopoulos
  • Eleftherios Kayafas
Part of the IFIP International Federation for Information Processing book series (IFIPAICT, volume 296)


In this paper we propose a web search methodology based on the Ant Colony Optimization (ACO) algorithm, which aims to enhance the amount of the relevant information in respect to a user's query. The algorithm aims to trace routes between hyperlinks, which connect two or more relevant information nodes of a web graph, with the minimum possible cost. The methodology uses the Ant-Seeker algorithm, where agents in the web paradigm are considered as ants capable of generating routing paths of relevant information through a web graph. The paper provides the implementation details of the web search methodology proposed, along with its initial assessment, which presents with quite promising results.


  1. 1.
    M. Dorigo and T. Stützle. Ant Colony Optimization. The MIT Press, 2004.Google Scholar
  2. 2.
    Dorigo M., and Caro G.D., 1999, “Ant Algorithms Optimization. Artificial Life”, 5(3):137– 172.CrossRefGoogle Scholar
  3. 3.
    Dorigo M., and Maniezzo V., 1996, “The ant system: optimization by a colony of cooperating agents”. IEEE Transactions on Systems, Man and Cybernetics, 26(1):1–13.Google Scholar
  4. 4.
    Dorigo M. and Caro G.D., 1999, “The Ant Colony Optimization Meta-heuristic” in New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover (Eds.), London: McGraw-Hill, pp. 11–32Google Scholar
  5. 5.
    Pokorny J (2004) Web searching and information retrieval. Computing in Science & Engineering. 6(4):43–48.CrossRefGoogle Scholar
  6. 6.
    Oyama S, Kokubo T, Ishida T (2004) Domain-specific Web search with keyword spices. IEEE Transactions on Knowledge and Data Engineering. 16(1):17–27.CrossRefGoogle Scholar
  7. 7.
    Pokorny J (2004) Web searching and information retrieval. Computing in Science & Engineering. 6(4):43–48.CrossRefGoogle Scholar
  8. 8.
    Broder A, Glassman S, Manasse M, Zweig G. Syntactic clustering of the Web. Proceedings 6th International World Wide Web Conference, April 1997; 391–404.Google Scholar
  9. 9.
    G. Kouzas, E. Kayafas, V. Loumos: “Ant Seeker: An algorithm for enhanced web search”, Proceedings 3rd IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI) 2006, June 2006, Athens, Greece. IFIP 204 Springer 2006, pp 649–656.Google Scholar
  10. 10.
    I. Anagnostopoulos, C. Anagnostopoulos, G. Kouzas and D. Vergados, “A Generalised Regression algorithm for web page categorisation”, Neural Computing & Applications journal, Springer-Verlag, 13(3):229–236, 2004.CrossRefGoogle Scholar
  11. 11.
    I. Anagnostopoulos, C. Anagnostopoulos, Vassili Loumos, Eleftherios Kayafas, “Classifying Web Pages employing a Probabilistic Neural Network Classifier”, IEE Proceedings — Software, 151(03):139–150, March 2004.CrossRefGoogle Scholar
  12. 12.
    Anagnostopoulos I., Psoroulas I., Loumos V. and Kayafas E., “Implementing a customized meta-search interface for user query personalization”, Proceedings 24th International Conference on Information Technology Interfaces (ITI'2002), pp. 79–84, June 2002, Cav-tat/Dubrovnik, Croatia.Google Scholar
  13. 13.
    K.M. Hammouda, M. S. Kamel,“Phrase-based Document Similarity Based on an Index Graph Model”, Proceedings IEEE International Conference on Data Mining (ICDM'2002), December 2002, Maebashi City, Japan. IEEE Computer Society 2002, pp. 203–210.Google Scholar
  14. 14.
    K.M. Hammouda, M. S. Kamel, “Incremental Document Clustering Using Cluster Similarity Histograms”, Proceedings WIC International Conference on Web Intelligence (WI 2003), October 2003, Halifax, Canada. IEEE Computer Society 2003, pp. 597–601Google Scholar
  15. 15.
    J. D. Isaacs and J. A. Aslam. “Investigating measures for pairwise document similarity. Technical Report PCS-TR99-357, Dartmouth College, Computer Science, Hanover, NH, June 1999Google Scholar
  16. 16.
    G. Salton, M. E. Lesk. Computer evaluation of indexing and text processing, Journal of the ACM, 15(1):8–36, 1968.CrossRefzbMATHGoogle Scholar
  17. 17.
    G. Salton. The SMART Retrieval System — Experiments in Automatic Document Processing. Prentice Hall Inc., 1971.Google Scholar
  18. 18.
    Kouzas G., E. Kayafas, V. Loumos “Web Similarity Measurements using Ant — Based Search Algorithm”, Proceedings XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September 2006, Rio de Janeiro, Brazil.Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Georgios Kouzas
    • 1
  • Vassileios Kolias
    • 2
  • Ioannis Anagnostopoulos
    • 1
  • Eleftherios Kayafas
    • 2
  1. 1.Department of Financial and Management Engineering, Department of Information and Communications Systems EngineeringUniversity of the AegeanAegeanGreece
  2. 2.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations