Molecular Farming of Antibodies in Plants

  • Rainer Fischer
  • Stefan Schillberg
  • Richard M. Twyman
Chapter

Abstract

Biopharmaceuticals are produced predominantly in microbial or mammalian bioreactor systems. Over the last few years, however, it has become clear that plants have great potential for economical, large-scale biopharmaceutical production. Following the commercial release of several maize-derived technical proteins, the first plant-derived veterinary vaccine was approved in 2006. Plants offer the prospect of inexpensive production without sacrificing product quality or safety. The first therapeutic products for use in humans – mostly antibodies and vaccine candidates – are now at the clinical trials stage. In this chapter, we discuss the different plant-based production systems that have been used to synthesize recombinant antibodies and to evaluate the merits of plants compared with other platforms. Despite the currently unclear regulatory framework, the benefits of plant-derived systems are now bringing the prospect of inexpensive recombinant antibodies closer than ever before.

References

  1. Andersen, D.C., Krummen, L. 2003. Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 3: 117–123.Google Scholar
  2. Artsaenko, O., Kettig, B., Fiedler, U., Conrad, U., Düring, K. 1998. Potato tubers as a biofactory for recombinant antibodies. Mol. Breeding 4: 313–319.CrossRefGoogle Scholar
  3. Bai, Y., Glatz, C.E. 2003. Bioprocess considerations for expanded-bed chromatography of crude canola extract: sample preparation and adsorbent reuse. Biotechnol. Bioeng. 81: 775–782.PubMedCrossRefGoogle Scholar
  4. Bakker, H., Bardor, M., Molthoff, J.W., Gomord, V., Elbers, I., Stevens, L.H., Jordi, W., Lommen, A., Faye, L., Lerouge, P., Bosch, D. 2001. Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl Acad. Sci. USA 98: 2899–2904.PubMedCrossRefGoogle Scholar
  5. Baneyx, F., Mujacic, M. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 1399–1408.PubMedCrossRefGoogle Scholar
  6. Basaran, P., Rodriguez-Cerezo, E. 2008. Plant molecular farming: opportunities and challenges. Crit. Rev. Biotechnol. 28: 153–172.PubMedCrossRefGoogle Scholar
  7. Benvenuto, E., Ordas, R.J., Tavazza, R., Ancora, G., Biocca, S., Cattaneo, A., Galeffi, P. 1991. ‘Phytoantibodies’: a general vector for the expression of immunoglobulin domains in transgenic plants. Plant Mol. Biol. 17: 865–874.PubMedCrossRefGoogle Scholar
  8. Blixt, O., Allin, K., Pereira, L., Datta, A., Paulson, J.C. 2002. Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides. J. Am. Chem. Soc. 124: 5739–5746.PubMedCrossRefGoogle Scholar
  9. Bock, R. 2007. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr. Opin. Biotechnol. 18: 100–106.PubMedCrossRefGoogle Scholar
  10. Borisjuk, N.V., Borisjuk, L.G., Logendra, S., Petersen, F., Gleba, Y., Raskin, I. 1999. Production of recombinant proteins in plant root exudates. Nat. Biotechnol. 17: 466–469.PubMedCrossRefGoogle Scholar
  11. Bouquin, T., Thomsen, M., Nielsen, L.K., Green, T.H., Mundy, J., Hanefeld Dziegiel, M. 2002. Human anti-rhesus D IgG1 antibody produced in transgenic plants. Transgenic Res. 11: 115–122.PubMedCrossRefGoogle Scholar
  12. Bruyns, A.M., De Jaeger, G., De Neve, M., De Wilde, C., Van Montagu, M., Depicker, A. 1996. Bacterial and plant-produced scFv proteins have similar antigen-binding properties. FEBS Lett. 386: 5–10.PubMedCrossRefGoogle Scholar
  13. Cabanes-Macheteau, M., Fitchette-Laine, A.C., Loutelier-Bourhis, C., Lange, C., Vine, N., Ma, J., Lerouge, P., Faye, L. 1999. N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9: 365–372.PubMedCrossRefGoogle Scholar
  14. Canizares, M.C., Nicholson, L., Lomonossoff, G.P. 2005. Use of viral vectors for vaccine production in plants. Immunol. Cell. Biol. 83: 263–270.Google Scholar
  15. Chadd, H.E., Chamow, S.M. 2001. Therapeutic antibody expression technology. Curr. Opin. Biotrechnol. 12: 188–194.CrossRefGoogle Scholar
  16. Chargelegue, D., Drake, P.M., Obregon, P., Prada, A., Fairweather, N., Ma, J.K. 2005. Highly immunogenic and protective recombinant vaccine candidate expressed in transgenic plants. Infect. Immun. 73: 5915–5922.PubMedCrossRefGoogle Scholar
  17. Christensen, A.H., Quail, P.H. 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5: 213–218.PubMedCrossRefGoogle Scholar
  18. Christou, P., Stoger, E., Twyman, R.M. 2004. Monocot systems for molecular farming. In: Fischer, R., Schillberg, S. (Eds.) Molecular Farming: Plant-made Pharmaceuticals and Technical Proteins. John Wiley & Sons Inc., New York, pp. 55–67.Google Scholar
  19. Chu, L., Robinson, D.K. 2001. Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 12: 180–187.PubMedCrossRefGoogle Scholar
  20. Commandeur, U., Twyman, R.M., Fischer, R. 2003. The biosafety of molecular farming in plants. AgBiotechNet 5: ABN 110.Google Scholar
  21. Conrad, U., Fiedler, U. 1998. Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol. Biol. 38: 101–109.PubMedCrossRefGoogle Scholar
  22. CPMP. 2002. Points to consider on quality aspects of medicinal products containing active substances produced by stable transgene expression in higher plants (CPMP/BWP/764/02). The European Medicines Agency (EMEA), London.Google Scholar
  23. CPMP. 2006. Guideline on the quality of biological active substances produced by stable transgene expression in higher plants. Draft 2. (EMEA/CHMP/BWP/48316/2006). The European Medicines Agency (EMEA), London.Google Scholar
  24. Cramer, C.L., Boothe, J.G., Oishi, K.K. 1999. Transgenic plants for therapeutic proteins: linking upstream and downstream technologies. Curr. Top. Microbiol. Immunol. 240: 95–118.PubMedGoogle Scholar
  25. Daniell, H., Chebolu, S., Kumar, S., Singleton, M., Falconer, R. 2005a. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23: 1779–1783.PubMedCrossRefGoogle Scholar
  26. Daniell, H., Kumar, S., Dufourmantel, N. 2005b. Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol. 23: 238–245.PubMedCrossRefGoogle Scholar
  27. D’Aoust, M.A., Lerouge, P., Busse, U., Bilodeau, P., Trepanier, S., Gomord, V., Faye, L., Vezina, L.P. 2004. Efficient and reliable production of pharmaceuticals in alfalfa. In: Fischer, R., Schillberg, S. (Eds.) Molecular Farming: Plant-made Pharmaceuticals and Technical Proteins. John Wiley & Sons, New York, pp. 1–12.Google Scholar
  28. De Jaeger, G., Scheffer, S., Jacobs, A., Zambre, M., Zobell, O., Goossens, A., Depicker, A., Angenon, G. 2002. Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat. Biotechnol. 20: 1265–1268.PubMedCrossRefGoogle Scholar
  29. De Marchis, F., Wang, Y., Stevanato, P., Arcioni, S., Bellucci, M. 2009. Genetic transformation of the sugar beet plastome. Transgenic Res. 18: 17–30.Google Scholar
  30. De Neve, M., De Loose, M., Jacobs, A., Van Houdt, H., Kaluza, B., Weidle, U., Van Montagu, M., Depicker, A. 1993. Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis. Transgenic Res. 2: 227–237.PubMedCrossRefGoogle Scholar
  31. De Wilde, C., De Rycke, R., Beeckman, T., De Neve, M., Van Montagu, M., Engler, G., Depicker, A. 1998. Accumulation pattern of IgG antibodies and Fab fragments in transgenic Arabidopsis thaliana plants. Plant Cell. Physiol. 39: 639–646.PubMedGoogle Scholar
  32. De Wilde, C., Peeters, K., Jacobs, A., Peck, I., Depicker, A. 2002. Expression of antibodies and Fab fragments in transgenic potato plants: a case study for bulk production in crop plants. Mol. Breeding 9: 271–282.CrossRefGoogle Scholar
  33. Decker, E.L., Reski, R. 2004. The moss bioreactor. Curr. Opin. Plant Biol. 7: 166–170.PubMedCrossRefGoogle Scholar
  34. Donson, J., Kearney, C.M., Hilf, M.E., Dawson, W.O. 1991. Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc. Natl Acad. Sci. USA 88: 7204–7208.PubMedCrossRefGoogle Scholar
  35. Doran, P.M. 2006. Foreign protein degradation and instability in plants and plant tissue cultures. Trends Biotechnol. 24: 426–432.PubMedCrossRefGoogle Scholar
  36. Drake, P.M., Chargelegue, D.M., Vine, N.D., van Dolleweerd, C.J., Obregon, P., Ma, J.K. 2003. Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Mol. Biol. 52: 233–241.PubMedCrossRefGoogle Scholar
  37. Drossard, J. 2003. Downstream processing of plant-derived recombinant therapeutic proteins. In: Fischer, R., Schillberg, S. (Eds.) Molecular Farming: Plant-made Pharmaceuticals and Technical Proteins. John Wiley & Sons Inc., New York, pp. 217–231.Google Scholar
  38. Dyck, M.K., Lacroix, D., Pothier, F., Sirard, M.A. 2003. Making recombinant proteins in animals – different systems, different applications. Trends Biotechnol. 21: 394–399.PubMedCrossRefGoogle Scholar
  39. Ehsani, P., Meunier, A., Nato, F., Jafari, A., Nato, A., Lafaye, P. 2003. Expression of anti human IL-4 and IL-6 scFvs in transgenic tobacco plants. Plant Mol. Biol. 52: 17–29.PubMedCrossRefGoogle Scholar
  40. Fahrner, R.L., Knudsen, H.L., Basey, C.D., Galan, W., Feuerhelm, D., Vanderlaan, M., Blank, G.S. 2001. Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes. Biotechnol. Genet. Eng. Rev. 18: 301–327.PubMedGoogle Scholar
  41. Faye, L., Boulaflous, A., Benchabane, M., Gomord, V., Michaud, D. 2005. Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23: 1770–1778.PubMedCrossRefGoogle Scholar
  42. FDA. 2002. Guidance for industry. Drugs, biologics, and medical devices derived from bioengineered plants for use in humans and animals. Food and Drug Administration, Rockville MD.Google Scholar
  43. Fischer, R., Emans, N. 2000. Molecular farming of pharmaceutical proteins. Transgenic Res. 9: 279–299.PubMedCrossRefGoogle Scholar
  44. Fischer, R., Emans, N., Schuster, F., Hellwig, S., Drossard, J. 1999. Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol. Appl. Biochem. 30: 109–112.PubMedGoogle Scholar
  45. Floss, D.M., Sack, M., Stadlmann, J., Rademacher, T., Scheller, J., Stöger, E., Fischer, R., Conrad, U. 2008. Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. Plant Biotechnol. J. 6: 379–391.PubMedCrossRefGoogle Scholar
  46. Francisco, J.A., Gawlak, S.L., Miller, M., Bathe, J., Russell, D., Chace, D., Mixan, B., Zhao, L., Fell, H.P., Siegall, C.B. 1997. Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture. Bioconjug. Chem. 8: 708–713.PubMedCrossRefGoogle Scholar
  47. Franconi, R., Roggero, P., Pirazzi, P., Arias, F.J., Desiderio, A., Bitti, O., Pashkoulov, D., Mattei, B., Bracci, L., Masenga, V., Milne, R.G., Benvenuto, E. 1999. Functional expression in bacteria and plants of an scFv antibody fragment against tospoviruses. Immunotechnology 4: 189–201.PubMedCrossRefGoogle Scholar
  48. Franklin, S.E., Mayfield, S.P. 2005. Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin. Biol. Ther. 5: 225–235.PubMedCrossRefGoogle Scholar
  49. Gasdaska, J.R., Spencer, D., Dickey, L. 2003. Advantages of therapeutic protein production in the aquatic plant Lemna. BioProcessing J. Mar/Apr: 49–56.Google Scholar
  50. Gavilondo, J.V., Larrick, J.W. 2000. Antibody production technology in the millennium. Biotechniques 29: 128–145.PubMedGoogle Scholar
  51. Gerngross, T.U. 2004. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat. Biotechnol. 22: 1409–1414.PubMedCrossRefGoogle Scholar
  52. Gleba, Y., Klimyuk, V., Marillonnet, S. 2005. Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine 23: 2042–2048.PubMedCrossRefGoogle Scholar
  53. Gleba, Y., Marillonnet, S., Klimyuk, V. 2004. Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr. Opin. Plant Biol. 7: 182–188.PubMedCrossRefGoogle Scholar
  54. Gomord, V., Chamberlain, P., Jefferis, R., Faye, L. 2005. Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol. 23: 559–565.PubMedCrossRefGoogle Scholar
  55. Gomord, V., Sourrouille, C., Fitchette, A.C., Bardor, M., Pagny, S., Lerouge, P., Faye, L. 2004. Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol. J. 2: 83–100.PubMedCrossRefGoogle Scholar
  56. Green, L. 1999. Antibody engineering via genetic engineering of the mouse: xenomouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods 231: 11–23.PubMedCrossRefGoogle Scholar
  57. Griffiths, A., Duncan, A. 1998. Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9: 102–108.PubMedCrossRefGoogle Scholar
  58. Harvey, A.J., Speksnijder, G., Baugh, L.R., Morris, J.A., Ivarie, R. 2002. Expression of exogenous protein in the egg white of transgenic chickens. Nat. Biotechnol. 20: 396–399.PubMedCrossRefGoogle Scholar
  59. Hellwig, S., Drossard, J., Twyman, R.M., Fischer, R. 2004. Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 22: 1415–1422.PubMedCrossRefGoogle Scholar
  60. Hendy, S., Chen, Z.C., Barker, H., Santa Cruz, S., Chapman, S., Torrance, L., Cockburn, W., Whitelam, G.C. 1999. Rapid production of single-chain Fv fragments in plants using a potato virus X episomal vector. J. Immunol. Methods 231: 137–146.PubMedCrossRefGoogle Scholar
  61. Hiatt, A., Cafferkey, R., Bowdish, K. 1989. Production of antibodies in transgenic plants. Nature 342: 76–78.PubMedCrossRefGoogle Scholar
  62. Hood, E.E., Woodard, S.L., Horn, M.E. 2002. Monoclonal antibody manufacturing in transgenic plants – myths and realities. Curr. Opin. Biotechnol. 13: 630–635.PubMedCrossRefGoogle Scholar
  63. Hull, A.K., Criscuolo, C.J., Mett, V., Groen, H., Steeman, W., Westra, H., Chapman, G., Legutki, B., Baillie, L., Yusibov, V. 2005. Human-derived, plant-produced monoclonal antibody for the treatment of anthrax. Vaccine 23: 2082–2086.PubMedCrossRefGoogle Scholar
  64. Ikonomou, L., Schneider, Y.J., Agathos, S.N. 2003. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62: 1–20.PubMedCrossRefGoogle Scholar
  65. Jefferis, R. 2001. Glycosylation of human IgG antibodies: relevance to therapeutic applications. Biopharm 14: 19–27.Google Scholar
  66. Kapila, J., De Rycke, R., van Montagu, M., Angenon, G. 1997. An agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122: 101–108.CrossRefGoogle Scholar
  67. Kathuria, S., Sriraman, R., Nath, R., Sack, M., Pal, R., Artsaenko, O., Talwar, G.P., Fischer, R., Finnern, R. 2002. Efficacy of plant-produced recombinant antibodies against HCG. Hum. Reprod. 17: 2054–2061.PubMedCrossRefGoogle Scholar
  68. Khoudi, H., Laberge, S., Ferullo, J.M., Bazin, R., Darveau, A., Castonguay, Y., Allard, G., Lemieux, R., Vezina, L.P. 1999. Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol. Bioeng. 64: 135–143.PubMedCrossRefGoogle Scholar
  69. Kipriyanov, S.M., Little, M. 1999. Generation of recombinant antibodies. Mol. Biotechnol. 12: 173–201.PubMedCrossRefGoogle Scholar
  70. Ko, K., Steplewski, Z., Glogowska, M., Koprowski, H. 2005. Inhibition of tumor growth by plant-derived mAb. Proc. Natl. Acad. Sci. USA 102: 7026–7030.CrossRefGoogle Scholar
  71. Ko, K., Tekoah, Y., Rudd, P.M., Harvey, D.J., Dwek, R.A., Spitsin, S., Hanlon, C.A., Rupprecht, C., Dietzschold, B., Golovkin, M., Koprowski, H. 2003. Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc. Natl. Acad. Sci. USA 100: 8013–8018.PubMedCrossRefGoogle Scholar
  72. Komarnytsky, S., Borisjuk, N.V., Borisjuk, L.G., Alam, M.Z., Raskin, I. 2000. Production of recombinant proteins in tobacco guttation fluid. Plant Physiol. 124: 927–933.PubMedCrossRefGoogle Scholar
  73. Lelivelt, C.L., McCabe, M.S., Newell, C.A., Desnoo, C.B., van Dun, K.M., Birch-Machin, I., Gray, J.C., Mills, K.H., Nugent, J.M. 2005. Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol. Biol. 58: 763–774.PubMedCrossRefGoogle Scholar
  74. Ma, J.K., Drake, P.M., Christou, P. 2003. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4: 794–805.PubMedCrossRefGoogle Scholar
  75. Ma, J.K., Hiatt, A., Hein, M., Vine, N.D., Wang, F., Stabila, P., van Dolleweerd, C., Mostov, K., Lehner, T. 1995. Generation and assembly of secretory antibodies in plants. Science 268: 716–719.PubMedCrossRefGoogle Scholar
  76. Magee, A.M., Coyne, S., Murphy, D., Horvath, E.M., Medgyesy, P., Kavanagh, T.A. 2004. T7 RNA polymerase-directed expression of an antibody fragment transgene in plastids causes a semi-lethal pale-green seedling phenotype. Transgenic Res. 13: 325–337.PubMedCrossRefGoogle Scholar
  77. Makvandi-Nejad, S., McLean, M.D., Hirama, T., Almquist, K.C., Mackenzie, C.R., Hall, J.C. 2005. Transgenic tobacco plants expressing a dimeric single-chain variable fragment (scFv) antibody against Salmonella enterica serotype Paratyphi B. Transgenic Res. 14: 785–792.PubMedCrossRefGoogle Scholar
  78. Maliga, P. 2003. Progress towards commercialization of plastid transformation technology. Trends Biotechnol. 21: 20–28.PubMedCrossRefGoogle Scholar
  79. Maliga, P. 2004. Plastid transformation in higher plants. Annu. Rev. Plant Biol. 55: 289–313.PubMedCrossRefGoogle Scholar
  80. Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., Gleba, Y. 2005. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat. Biotechnol. 23: 718–723.PubMedCrossRefGoogle Scholar
  81. Mayfield, S.P., Franklin, S.E. 2005. Expression of human antibodies in eukaryotic micro-algae. Vaccine 23: 1828–1832.PubMedCrossRefGoogle Scholar
  82. Mayfield, S.P., Franklin, S.E., Lerner, R.A. 2003. Expression and assembly of a fully active antibody in algae. Proc. Natl. Acad. Sci. USA 100: 438–442.PubMedCrossRefGoogle Scholar
  83. McCormick, A.A., Kumagai, M.H., Hanley, K., Turpen, T.H., Hakim, I., Grill, L.K., Tuse, D., Levy, S., Levy, R. 1999. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc. Natl. Acad. Sci. USA 96: 703–708.PubMedCrossRefGoogle Scholar
  84. Menkhaus, T.J., Bai, Y., Zhang, C., Nikolov, Z.L., Glatz, C.E. 2004. Considerations for the recovery of recombinant proteins from plants. Biotechnol. Prog. 20: 1001–1014.PubMedCrossRefGoogle Scholar
  85. Menkhaus, T.J., Glatz, C.E. 2005. Antibody capture from corn endosperm extracts by packed bed and expanded bed adsorption. Biotechnol. Prog. 21: 473–485.PubMedCrossRefGoogle Scholar
  86. Nikolov, Z.L., Regan, J.T., Dickey, L.F., Woodard, S.L. 2009. Purification of antibodies from transgenic plants. In: Gottschalk, U. (Ed.) Process Scale Purification of Antibodies. John Wiley & Sons, New York, pp. 387–406.CrossRefGoogle Scholar
  87. Nikolov, Z.L., Woodard, S.L. 2004. Downstream processing of recombinant proteins from transgenic feedstock. Curr. Opin. Biotechnol. 15: 479–486.PubMedCrossRefGoogle Scholar
  88. Nugent, G.D., Coyne, S., Nguyen, T.T., Kavanagh, T.A., Dix, P.J. 2006. Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci. 170: 135–142.CrossRefGoogle Scholar
  89. Padidam, M. 2003. Chemically regulated gene expression in plants. Curr. Opin. Plant Biol. 6: 169–177.PubMedCrossRefGoogle Scholar
  90. Perrin, Y., Vaquero, C., Gerrard, I., Sack, M., Drossard, J., Stoger, E., Christou, P., Fischer, R. 2000. Transgenic pea seeds as bioreactors for the production of a single-chain Fv fragment (scFv) antibody used in cancer diagnosis and therapy. Mol. Breeding 6: 345–352.CrossRefGoogle Scholar
  91. Platis, D., Drossard, J., Fischer, R., Ma, J.K., Labrou, N.E. 2008. New downstream processing strategy for the purification of monoclonal antibodies from transgenic tobacco plants. J. Chromatogr. A. 1211: 80–89.PubMedCrossRefGoogle Scholar
  92. Rademacher, T., Sack, M., Arcalis, E., Stadlmann, J., Balzer, S., Altmann, F., Quendler, H., Stiegler, G., Kunert, R., Fischer, R., Stoger, E. 2008. Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. Plant Biotechnol. J. 6: 189–201.PubMedCrossRefGoogle Scholar
  93. Raju, T.S., Briggs, J., Borge, S.M., Jones, A.J.S. 2000. Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiolgy 10: 477–486.CrossRefGoogle Scholar
  94. Ramessar, K., Capell, T., Christou, P. 2008a. Molecular pharming in cereal crops. Phytochem. Rev. 7: 579–592.CrossRefGoogle Scholar
  95. Ramessar, K., Capell, T., Twyman, R.M., Quemada, H., Christou, P. 2008b. Trace and traceability – a call for regulatory harmony. Nat. Biotechnol. 26: 975–978.PubMedCrossRefGoogle Scholar
  96. Ramessar, K., Rademacher, T., Sack, M., Stadlmann, J., Platis, D., Stiegler, G., Labrou, N., Altmann, F., Ma, J., Stöger, E., Capell, T., Christou, P. 2008c. Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc. Natl. Acad. Sci. USA 105: 3727–3732.PubMedCrossRefGoogle Scholar
  97. Ramírez, N., Ayala, M., Lorenzo, D., Palenzuela, D., Herrera, L., Doreste, V., Pérez, M., Gavilond, J.V., Oramas, P. 2002. Expression of a single-chain Fv antibody fragment specific for the hepatitis B surface antigen in transgenic tobacco plants. Transgenic Res. 11: 61–64.PubMedCrossRefGoogle Scholar
  98. Rodriguez, M., Ramirez, N.I., Ayala, M., Freyre, F., Perez, L., Triguero, A., Mateo, C., Selman-Housein, G., Gavilondo, J.V., Pujol, M. 2005. Transient expression in tobacco leaves of an aglycosylated recombinant antibody against the epidermal growth factor receptor. Biotechnol. Bioeng. 89: 188–194.CrossRefGoogle Scholar
  99. Sack, M., Paetz, A., Kunert, R., Bomble, M., Hesse, F., Stiegler, G., Fischer, R., Katinger, H., Stoeger, E., Rademacher, T. 2007. Functional analysis of the broadly neutralizing human anti-HIV-1 antibody 2F5 produced in transgenic BY-2 suspension cultures. FASEB J. 21: 1655–1664.PubMedCrossRefGoogle Scholar
  100. Schaefer, D.G. 2002. A new moss genetics: targeted mutagenesis in Physcomitrella patens. Annu. Rev. Plant Biol. 53: 477–501.PubMedCrossRefGoogle Scholar
  101. Schillberg, S., Emans, N., Fischer, R. 2002. Antibody molecular farming in plants and plant cells. Phytochem. Rev. 1: 45–54.CrossRefGoogle Scholar
  102. Schillberg, S., Fischer, R., Emans, N. 2003. Molecular farming of recombinant antibodies in plants. Cell. Mol. Life Sci. 60: 433–445.PubMedCrossRefGoogle Scholar
  103. Schillberg, S., Zimmermann, S., Voss, A., Fischer, R. 1999. Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum. Transgenic Res. 8: 255–263.PubMedCrossRefGoogle Scholar
  104. Schillberg, S., Zimmermann, S., Zhang, M.Y., Fischer, R. 2001. Antibody-based resistance to plant pathogens. Transgenic Res. 10: 1–12.PubMedCrossRefGoogle Scholar
  105. Schunmann, P.H.D., Coia, G., Waterhouse, P.M. 2002. Biopharming the SimpliREDTM HIV diagnostic reagent in barley, potato and tobacco. Mol. Breeding 9: 113–121.CrossRefGoogle Scholar
  106. Schunmann, P.H.D., Surin, B., Waterhouse, P.M. 2003. A suite of novel promoters and terminators for plant biotechnology. II. The pPLEX series for use in monocots. Funct. Plant Biol. 30: 453–460.CrossRefGoogle Scholar
  107. Semenyuk, E.G., Orlova, I.V., Stremovskii, O.A., Balandin, T.G., Nosov, A.M., Bur'yanov, Y., Deev, S.M. 2002. Transgenic tobacco plants produce miniantibodies against human ferritin. Dokl. Biochem. Biophys. 384: 176–178.PubMedCrossRefGoogle Scholar
  108. Seveno, M., Bardor, M., Paccalet, T., Gomord, V., Lerouge, P., Faye, L. 2004. Glycoprotein sialylation in plants? Nat. Biotechnol. 22: 1351–1352.CrossRefGoogle Scholar
  109. Shah, M.M., Fujiyama, K., Flynn, C.R., Joshi, L. 2003. Sialylated endogenous glycoconjugates in plant cells. Nat. Biotechnol. 21: 1470–1471.PubMedCrossRefGoogle Scholar
  110. Shah, M.M., Fujiyama, K., Flynn, C.R., Joshi, L. 2004. Glycoprotein sialylation in plants? Reply. Nat. Biotechnol. 22: 1352–1353.CrossRefGoogle Scholar
  111. Sharp, J.M., Doran, P.M. 2001a. Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol. Bioeng. 73: 338–346.PubMedCrossRefGoogle Scholar
  112. Sharp, J.M., Doran, P.M. 2001b. Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol. Prog. 17: 979–992.PubMedCrossRefGoogle Scholar
  113. Sidhu, S.S. 2000. Phage display in pharmaceutical biotechnology. Curr. Opin. Biotechnol. 11: 610–616.PubMedCrossRefGoogle Scholar
  114. Sparrow, P.A.C., Irwin, J.A., Dale, P.J., Twyman, R.M. and Ma, J.K.C. 2007. Pharma-Planta: road testing the developing regulatory guidelines for plant-made pharmaceuticals. Transgenic Res. 16: 147–161.PubMedCrossRefGoogle Scholar
  115. Spök, A., Twyman, R.M., Fischer, R., Ma, J.K.C., Sparrow, P.A.C. 2008. Evolution of a regulatory framework for plant-made pharmaceuticals. Trends Biotechnol. 26: 506–517.PubMedCrossRefGoogle Scholar
  116. Sriraman, R., Bardor, M., Sack, M., Vaquero, C., Faye, L., Fischer, R., Finnern, R., Lerouge, P. 2004. Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-α(1,3)-fucose residues. Plant Biotechnol. J. 2: 279–287.PubMedCrossRefGoogle Scholar
  117. Sriraman, R., Sack, M., Talwar, G.P., Fischer, R. 2003. Glycosylation of recombinant antibodies in plants. In: Proceedings of the Ninth Annual Ranbaxy Science Foundation Symposium. Ranbaxy Science Foundation, New Delhi, pp. 89–98.Google Scholar
  118. Stoger, E., Ma, J.K., Fischer, R., Christou, P. 2005a. Sowing the seeds of success: pharmaceutical proteins from plants. Curr. Opin. Biotechnol. 16: 167–173.PubMedCrossRefGoogle Scholar
  119. Stoger, E., Sack, M., Nicholson, L., Fischer, R., Christou, P. 2005b. Recent progress in plantibody technology. Curr. Pharm. Des. 11: 2439–2457.PubMedCrossRefGoogle Scholar
  120. Stoger, E., Sack, M., Perrin, Y., Vaquero, C., Torres, E., Twyman, R.M., Christou, P., Fischer, R. 2002. Practical considerations for pharmaceutical antibody production in different crop systems. Mol. Breeding 9: 149–158.CrossRefGoogle Scholar
  121. Stoger, E., Vaquero, C., Torres, E., Sack, M., Nicholson, L., Drossard, J., Williams, S., Keen, D., Perrin, Y., Christou, P., Fischer, R. 2000. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol. Biol. 42: 583–590.PubMedCrossRefGoogle Scholar
  122. Strasser, R., Altmann, F., Mach, L., Glossl, J., Steinkellner, H. 2004. Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett. 561: 132–136.PubMedCrossRefGoogle Scholar
  123. Subroto, M.A., Hamill, J.D., Doran, P.M. 1996. Development of shooty teratomas from several solanaceous plants: growth kinetics, stoichiometry and alkaloid production. J. Biotechnol. 45: 45–57.CrossRefGoogle Scholar
  124. Torres, E., Vaquero, C., Nicholson, L., Sack, M., Stoger, E., Drossard, J., Christou, P., Fischer, R., Perrin, Y. 1999. Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res. 8: 441–449.PubMedCrossRefGoogle Scholar
  125. Triguero, A., Cabrera, G., Cremata, J.A., Yuen, C.T., Wheeler, J., Ramírez, N.I. 2005. Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnol. J. 3: 449–457.PubMedCrossRefGoogle Scholar
  126. Twyman, R.M., Schillberg, S., Fischer, R. 2005. Transgenic plants in the biopharmaceutical market. Expert Opin. Emerg. Drugs 10: 185–218.PubMedCrossRefGoogle Scholar
  127. Twyman, R.M., Stoger, E., Schillberg, S., Christou, P., Fischer, R. 2003. Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21: 570–578.PubMedCrossRefGoogle Scholar
  128. Valdes, R., Gomez, L., Padilla, S., Brito, J., Reyes, B., Alvarez, T., Mendoza, O., Herrera, O., Ferro, W., Pujol, M., Leal, V., Linares, M., Hevia, Y., Garcia, C., Mila, L., Garcia, O., Sanchez, R., Acosta, A., Geada, D., Paez, R., Luis Vega, J., Borroto, C. 2003a. Large-scale purification of an antibody directed against hepatitis B surface antigen from transgenic tobacco plants. Biochem. Biophys. Res. Commun. 308: 94–100.PubMedCrossRefGoogle Scholar
  129. Valdes, R., Reyes, B., Alvarez, T., Garcia, J., Montero, J.A., Figueroa, A., Gomez, L., Padilla, S., Geada, D., Abrahantes, M.C., Dorta, L., Fernandez, D., Mendoza, O., Ramirez, N., Rodriguez, M., Pujol, M., Borroto, C., Brito, J. 2003b. Hepatitis B surface antigen immunopurification using a plant-derived specific antibody produced in large scale. Biochem. Biophys. Res. Commun. 310: 742–747.PubMedCrossRefGoogle Scholar
  130. Van Droogenbroeck, B., Cao, J., Stadlmann, J., Altmann, F., Colanesi, S., Hillmer, S., Robinson, D.G., Van Lerberge, E., Terryn, N., Van Montagu, M., Liang, M., Depicker, A., De Jaeger, G. 2007. Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsisseeds. Proc. Natl. Acad. Sci. USA 104: 1430–1435.PubMedCrossRefGoogle Scholar
  131. Vaquero, C., Sack, M., Chandler, J., Drossard, J., Schuster, F., Monecke, M., Schillberg, S., Fischer, R. 1999. Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc. Natl. Acad. Sci. USA 96: 11128–11133.PubMedCrossRefGoogle Scholar
  132. Vaquero, C., Sack, M., Schuster, F., Finnern, R., Drossard, J., Schumann, D., Reimann, A., Fischer, R. 2002. A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J. 16: 408–410.PubMedGoogle Scholar
  133. Verch, T., Yusibov, V., Koprowski, H. 1998. Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector. J. Immunol. Methods 220: 69–75.PubMedCrossRefGoogle Scholar
  134. Vine, N.D., Drake, P., Hiatt, A., Ma, J.K. 2001. Assembly and plasma membrane targeting of recombinant immunoglobulin chains in plants with a murine immunoglobulin transmembrane sequence. Plant Mol. Biol. 45: 159–167.PubMedCrossRefGoogle Scholar
  135. Warner, T.G. 2000. Metabolic engineering glycosylation: biotechnology’s challenge to the glycobiologist in the new millennium. In: Ernst, B., Hart, G.W., Sanay, P. (Eds.) Carbohydrates in Chemistry and Biology. Wiley-VCH, New York, pp. 1043–1064.CrossRefGoogle Scholar
  136. Wurm, F.M. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22: 1393–1398.PubMedCrossRefGoogle Scholar
  137. Yano, A., Maeda, F., Takekoshi, M. 2004. Transgenic tobacco cells producing the human monoclonal antibody to hepatitis B virus surface antigen. J. Med. Virol. 73: 208–215.PubMedCrossRefGoogle Scholar
  138. Yusibov, V., Rabindran, S. 2008. Recent progress in the development of plant derived vaccines. Expert Rev. Vaccines 7: 1173–1183.CrossRefGoogle Scholar
  139. Yusibov, V., Rabindran, S., Commandeur, U., Twyman, R.M., Fischer, R. 2006. The potential of plant virus vectors for vaccine production. Drugs R&D 7: 203–217.CrossRefGoogle Scholar
  140. Zeitlin, L., Olmsted, S.S., Moench, T.R., Co, M.S., Martinell, B.J., Paradkar, V.M., Russell, D.R., Queen, C., Cone, R.A., Whaley, K.J. 1998. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat. Biotechnol. 16: 1361–1364.PubMedCrossRefGoogle Scholar
  141. Ziegler, A., Cowan, G.H., Torrance, L., Ross, H.A., Davies, H.V. 2000. Facile assessment of cDNA constructs for expression of functional antibodies in plants using the potato virus X vector. Mol. Breeding 6: 327–335.CrossRefGoogle Scholar
  142. Zimmermann, S., Schillberg, S., Liao, Y.C., Fisher, R. 1998. Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Mol. Breeding. 4: 369–379.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rainer Fischer
    • 1
  • Stefan Schillberg
    • 1
  • Richard M. Twyman
    • 2
  1. 1.Fraunhofer Institute for Molecular Biology and Applied Ecology (IME)52074 AachenGermany
  2. 2.Department of BiologyUniversity of York, Heslington, YorkQueryUK

Personalised recommendations