The Future of Teaching and Learning Mathematics with Digital Technologies

  • Michèle Artigue
Chapter
Part of the New ICMI Study Series book series (NISS, volume 13)

Abstract

In this text, directly inspired by my closing lecture at the ICMI Study Conference in Hanoi, I use first my personal experience for analyzing the evolution of relationship with digital technologies in mathematics education along the last two decades, and for situating the reflection about the future into an historical dynamics. Then, I focus on some dimensions that I consider crucial for thinking the future of teaching and learning with digital technologies: the theoretical, teacher, curricular, design, equity and access dimensions. These have been extensively addressed during the ICMI Study Conference and I use the perception I have of its outcomes for thinking about the challenges we have to face, and about what we can do in order to make digital technologies better serve the cause of mathematics education.

Keywords

Theories Teacher Curriculum Design Equity 

References

  1. Artigue, M. (1981). DEUG SSM Première année. Section E – Un an de fonctionnement. Brochure no. 29. IREM Paris 7.Google Scholar
  2. Artigue, M. (1989). Une recherche d’ingénierie sur l’enseignement des équations différentielles en DEUG première année. Actes du Séminaire de Didactique des Mathématiques et de l’Informatique. Grenoble: IMAG.Google Scholar
  3. Artigue, M. (1992). Functions from an algebraic and graphic point of view: cognitive difficulties and teaching practices. In E. Dubinski & G. Harel (Eds.), The Concept of Function – Aspects of Epistemology and Pedagogy (pp. 109–132). MAA Notes No. 25. Washington, DC: The Mathematical Association of America.Google Scholar
  4. Artigue, M. (1997). Le logiciel DERIVE comme révélateur de phénomènes didactiques liés à l’utilisation d’environnements informatiques pour l’apprentissage. Educational Studies in Mathematics, 33, 133–169.CrossRefGoogle Scholar
  5. Artigue, M. (1998). Teacher training as a key issue for the integration of computer technologies, In D. Tinsley & D.C. Johnson (Eds.), Information and Communication Technologies in School Mathematics (pp. 121–130). London: Chapman & Hall.Google Scholar
  6. Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematics Learning, 7, 245–274.CrossRefGoogle Scholar
  7. Artigue, M. (Ed.) (2006). Integrative Theoretical Framework. ReMath Deliverable D1. Available at http://www.remath.cti.gr.Google Scholar
  8. Artigue, M. (Ed.) (2007). Comparison of Theories in Technology Enhanced Learning in Mathematics. TELMA Deliverable 20-4-2. Kaleidoscope Network of Excellence. Available at http://telma.noe-kaleidoscope.org.Google Scholar
  9. Artigue, M., & Groupe TICE IREM Paris 7 (2008). L’utilisation de ressources en ligne pour l’enseignement des mathématiques au lycée: du suivi d’une expérimentation régionale à un objet de recherche. In N. Bednarz & C. Mary. (Eds.), Actes du Colloque EMF 2006, L’enseignement des mathématiques face aux défis de l’école et des communautés, Thème 5 (pp. 1–11). Sherbrooke, QC: Université de Sherbrooke.Google Scholar
  10. Artigue, M., Belloc, J., & Touaty, S. (1989). Une recherche menée dans le cadre du projet EUCLIDE. Brochure n. IREM Paris 7.Google Scholar
  11. Assude, T., & Gelis, J.-M. (2002). La dialectique ancien-nouveau dans l’intégration de Cabri à l’école primaire. Educational Studies in Mathematics, 50, 259–287.CrossRefGoogle Scholar
  12. Chevallard, Y. (1992). Concepts fondamentaux de la didactique: perspectives apportées par une approche anthropologique. Recherches en Didactique des Mathématiques, 12(1), 77–111.Google Scholar
  13. Cornu, B., & Ralston, A. (Eds.) (1992). The Influence of Computers and Informatics on Mathematics and its Teaching. Science and Technology Education. Document Series 44. Paris: UNESCO.Google Scholar
  14. Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking, In D. Tall (Ed.), Advanced mathematical thinking (pp. 95–126). Dordrecht: Kluwer.Google Scholar
  15. Duval, R. (1995). Semiosis et Noesis. Berne: Peter Lang.Google Scholar
  16. Guin, D., Ruthven, K., & Trouche, K. (Eds.) (2004). The didactic challenge of symbolic calculators. Dordrecht: Kluwer.Google Scholar
  17. Haspekian, M., & Artigue, M. (2007). L’intégration d’artefacts informatiques professionnels à l’enseignement dans une perspective instrumentale: le cas des tableurs. In M. Baron, D. Guin, L. Trouche (Eds.), Environnements informatisés et ressources numériques pour l’apprentissage (pp. 37–63). Paris: Editions Hermès.Google Scholar
  18. Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri-geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.CrossRefGoogle Scholar
  19. Monaghan, J. (2004). Teachers’ activities in technology-based mathematics Lessons. International Journal of Computers for Mathematical Learning, 9(3), 327–357.CrossRefGoogle Scholar
  20. Rabardel, P. (1996). L’homme et les outils contemporains. Paris: A. Colin. (English version: People and technology, a cognitive approach to contemporary instruments, available at http://ergoserv.psy.univ-paris8.fr/).Google Scholar
  21. Saenz-Ludlow, A., & Presmeg, N. (Eds.) (2006). Semiotic perspectives in mathematics education. A PME special issue. Educational Studies in Mathematics, 61(1–2).Google Scholar
  22. Sfard, A. (2005). What could be more practical than good theory. Educational Studies in Mathematics, 58(3), 393–413.CrossRefGoogle Scholar
  23. Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.CrossRefGoogle Scholar
  24. Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: a contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.CrossRefGoogle Scholar
  25. Wenger, E. (1998). Communities of practice, learning, meaning and identity. Cambridge: Cambridge University Press.Google Scholar
  26. Wilensky, U. (Ed.) (2003). Special issue on agent-based modeling. International Journal of Computers for Mathematical Learning, 8(1), 1–41.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michèle Artigue
    • 1
  1. 1.Université Paris DiderotParisFrance

Personalised recommendations