Relativistic Pseudopotentials

Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 10)

Abstract

A brief overview over the foundations and modern variants of the relativistic effective core potential method, i.e., energy-consistent and shape-consistent ab initio pseudopotentials as well as ab initio model potentials, is given. The energy-consistent ab initio pseudopotential approach is discussed in more detail, focussing on the uranium atom as an example. The selection of appropriate relativistic reference data, the choice of the core and the fitting procedure are discussed. Results of atomic and molecular test calculations, e.g., for the low-lying electronic states of uranium hydride, are summarized. Whereas the 5f-in-core large-core approximation provides an efficient approximate treatment of larger actinide systems without having to struggle with complexities arising from the open 5f shell, the 5f-in-valence small-core approach allows to reach a similar accuracy as the best available relativistic all-electron calculations.

Keyword

Effective core potentials Model potentials Pseudopotentials Pseudo-valence orbitals Core-polarization potentials Dirac–Coulomb–Hamiltonian Breit interaction Wood–Boring–Hamiltonian Frozen-core errors Uranium Uranium hydride Electronic structure Excited states Calibration 

References

  1. 1.
    Abarenkov, I.V., Heine, V.: The model potential for positive ions. Phil. Mag. 12, 529–537 (1965)CrossRefGoogle Scholar
  2. 2.
    Ahlrichs, R., et al.: TURBOMOLE, quantum chemistry program system. http://www.turbomole.com
  3. 3.
    Andrae, D., Häußermann, U., Dolg, M., Stoll, H., Preuß, H.: Energy-adjusted ab initio pseudopotentials for the second row and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990)CrossRefGoogle Scholar
  4. 4.
    Andzelm, J., Radzio, E., Salahub, D.R.: Model potential calculations for second-row transition metal molecules within the local-spin-density method. J. Chem. Phys. 83, 4573–4580 (1985)CrossRefGoogle Scholar
  5. 5.
    Bachelet, G.B., Schlüter, M.: Relativistic norm-conserving pseudopotentials. Phys. Rev. B 25, 2103–2108 (1982)CrossRefGoogle Scholar
  6. 6.
    Bachelet, G.B., Hamann, D.R., Schlüter, M.: Pseudopotentials that work: From H to Pu. Phys. Rev. B 26, 4199–4228 (1982)CrossRefGoogle Scholar
  7. 7.
    Barthelat, J.C., Durandi, Ph.: Recent progress of pseudo-potential methods in quantum chemistry. Gaz. Chim. Ital. 108, 225–236 (1978)Google Scholar
  8. 8.
    Barthelat, J.C., Durand, P., Serafini, A.: Non-empirical pseudopotentials for molecular calculations. I. The PSIBMOL algorithm and test calculations. Mol. Phys. 33, 159–180 (1977)Google Scholar
  9. 9.
    Batista, E.R., Martin, R.L., Hay, P.J., Peralta, J.E., Scuseria, G.E.: Density functional investigations of the properties of UF6 and UF5 using valence-electron and all-electron approaches. J. Chem. Phys. 121, 2144–2150 (2004)CrossRefGoogle Scholar
  10. 10.
    Batista, E.R., Martin, R.L., Hay, P.J.: Density functional investigations of the properties and thermochemistry of UFn and UCln (n = 1 – 6). J. Chem. Phys. 121, 11104–11111 (2004)CrossRefGoogle Scholar
  11. 11.
    Bergner, A., Dolg, M., Küchle, W., Stoll, H., Preuß, H.: Ab initio energy-adjusted pseudopotentials for elements of groups 13 through 17. Mol. Phys. 80, 1431–1441 (1993)CrossRefGoogle Scholar
  12. 12.
    Blaudeau, J.P., Curtiss, L.A.: Optimized Gaussian basis sets for use with relativistic effective (core) potentials: K, Ca, Ga-Kr. Int. J. Quant. Chem. 61, 943–952 (1997)CrossRefGoogle Scholar
  13. 13.
    Bonifacic, V., Huzinaga, S.: Atomic and molecular calculations with the model potential method. I. J. Chem. Phys. 60, 2779–2786 (1974)CrossRefGoogle Scholar
  14. 14.
    Burkatzki, M., Filippi, C., Dolg, M.: Energy-consistent pseudopotentials for Quantum Monte Carlo calculations. J. Chem. Phys. 126, 234105-1–234105-8 (2007)Google Scholar
  15. 15.
    Burkatzki, M., Filippi, C., Dolg, M.: Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations. J. Chem. Phys. 129, 164115-1–164115-7 (2008)Google Scholar
  16. 16.
    Burkatzki, M., et al.: Cologne QMC PPs. http://www.tc.uni-koeln.de/data/psdb/intro.html
  17. 17.
    Cao, X., Dolg, M.: Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. J. Chem. Phys. 115, 7348–7355 (2001)CrossRefGoogle Scholar
  18. 18.
    Cao, X., Dolg, M.: Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Molec. Struct. (Theochem) 581, 139–147 (2002)Google Scholar
  19. 19.
    Cao, X., Dolg, M.: Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Molec. Struct. (Theochem) 673, 203–209 (2004)Google Scholar
  20. 20.
    Cao, X., Dolg, M.: Relativistic energy-consistent ab initio pseudopotentials as tools for quantum chemical investigations of actinide systems. Coord. Chem. Rev. 250, 900–912 (2006)CrossRefGoogle Scholar
  21. 21.
    Cao, X., Dolg, M., Stoll, H.: Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 118, 487–496 (2003)CrossRefGoogle Scholar
  22. 22.
    Cao, X., Li, Q., Moritz, A., Xie, Z., Dolg, M., Chen, X., Fang, W.: Density functional studies of actinide (III) motexafins (An-Motex2 +, An = Ac, Cm, Lr). Structure, stability and comparison with lanthanide (III) motexafins. Inorg. Chem. 45, 3444–3451 (2006)Google Scholar
  23. 23.
    Cao, X., Moritz, A., Dolg, M.: All-electron Douglas-Kroll-Hess and pseudopotential study on the low-lying states of uranium hydride UH. Chem. Phys. 343, 250–257 (2008)CrossRefGoogle Scholar
  24. 24.
    Christiansen, P.A., Lee, Y.S., Pitzer, K.S.: Improved ab initio effective core potentials for molecular calculations. J. Chem. Phys. 71, 4445–4450 (1979)CrossRefGoogle Scholar
  25. 25.
    Cowan, R.D., Griffin, D.C.: Approximate relativistic corrections to atomic radial wave functions. J. Opt. Soc. Am. 66, 1010–1014 (1976)CrossRefGoogle Scholar
  26. 26.
    Cundari, T.R., Stevens, W.J.: Effective core potential methods for the lanthanides. J. Chem. Phys. 98, 5555–5565 (1993)CrossRefGoogle Scholar
  27. 27.
    Delley, B.: Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66, 155125-1–155125-9 (2002)Google Scholar
  28. 28.
    Dolg, M.: On the accuracy of valence correlation energies in pseudopotential calculations. J. Chem. Phys. 104, 4061–4067 (1996)CrossRefGoogle Scholar
  29. 29.
    Dolg, M.: Valence correlation energies from pseudopotential calculations. Chem. Phys. Lett. 250, 75–79 (1996)CrossRefGoogle Scholar
  30. 30.
    Dolg, M.: Effective core potentials. In: J. Grotendorst (ed.) Modern Methods and Algorithms of Quantum Chemistry, John Neumann Institute for Computing, NIC Series, Volume. 1, pp. 479–508, Jülich (2000); Volume 3, pp. 507–540, Jülich (2000)Google Scholar
  31. 31.
    Dolg, M.: Relativistic effective core potentials. In: P. Schwerdtfeger (ed.) Relativistic Electronic Structure Theory, Part 1: Fundamentals; Theoretical and Computational Chemistry, Volume 11, ch. 14, pp. 793–862. Elsevier, Amsterdam (2002)Google Scholar
  32. 32.
    Dolg, M.: Improved relativistic energy-consistent pseudopotentials for 3d transition metals. Theor. Chem. Acc. 114, 297–304 (2005)CrossRefGoogle Scholar
  33. 33.
    Dolg, M., Cao, X.: The relativistic energy-consistent ab initio pseudopotential approach and its application to lanthanide and actinide compounds. In: K. Hirao, Y. Ishikawa (eds.) Recent Advances in Computational Chemistry, Volume 6, pp. 1–35. World Scientific, New Jersey (2004)Google Scholar
  34. 34.
    Dolg, M., Cao, X.: Accurate relativistic small-core pseudopotentials for actinides. Energy adjustment for uranium and first applications to uranium hydride. J. Phys. Chem. A 113, 12573–12581 (2009)Google Scholar
  35. 35.
    Dolg, M., Wedig, U., Stoll, H., Preuß, H.: Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866–872 (1987)CrossRefGoogle Scholar
  36. 36.
    Dolg, M., Stoll, H., Preuß, H.: Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys. 90, 1730–1734 (1989)CrossRefGoogle Scholar
  37. 37.
    Dolg, M., Stoll, H., Savin, A., Preuß, H.: Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta 75, 173–194 (1989)CrossRefGoogle Scholar
  38. 38.
    Dolg, M., Stoll, H., Preuß, H., Pitzer, R.M.: Relativistic and correlation effects for element 105 (Hahnium Ha). A comparative study of M and MO (M = Nb, Ta, Ha) using energy-adjusted ab initio pseudopotentials. J. Phys. Chem. 97, 5852–5859 (1993)Google Scholar
  39. 39.
    Dolg, M., Stoll, H., Preuß, H.: A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta 85, 441–450 (1993)CrossRefGoogle Scholar
  40. 40.
    Durand, P., Barthelat, J.C.: A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theor. Chim. Acta 38, 283–302 (1975)CrossRefGoogle Scholar
  41. 41.
    Dyall, K.G., Grant, I.P., Johnson, C.T., Parpia, F.A., Plummer, E.P.: GRASP – a general-purpose relativistic atomic structure program. Comput. Phys. Commun. 55, 425–456 (1989). Dolg, M., Metz, B.: Modifications for PP calculations/optimizationsGoogle Scholar
  42. 42.
    Ermler, W.C., Lee, Y.S., Christiansen, P.A., Pitzer, K.S.: Ab initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions. Chem. Phys. Lett. 81, 70–74 (1981)Google Scholar
  43. 43.
    Ermler, W.C., Ross, R.B., Christiansen, P.A.: Spin-orbit coupling and other relativistic effects in atoms and molecules. Adv. Quantum. Chem. 19, 139–182 (1988)CrossRefGoogle Scholar
  44. 44.
    Ermler, W.C., Ross, R.B., Christiansen, P.A.: Ab initio relativistic effective potentials with spin-orbit operators. VI. Fr through Pu. Int. J. Quant. Chem. 40, 829–846 (1991)CrossRefGoogle Scholar
  45. 45.
    Evarestov, R.A., Losev, M.V., Panin, A.I., Mosyagin, N.S., Titov, A.V.: Phys. Stat. Sol. B 245, 114–122 (2008)CrossRefGoogle Scholar
  46. 46.
    Field, R.W.: Diatomic molecule electronic structure beyond simple molecular constants. Ber. Bunsenges. Phys. Chem. 86, 771–779 (1982)CrossRefGoogle Scholar
  47. 47.
    Figgen, D., Rauhut, G., Dolg, M., Stoll, H.: Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac-Hartree-Fock data. Chem. Phys. 311, 227–244 (2005)CrossRefGoogle Scholar
  48. 48.
    Figgen, D., Wedig, A., Stoll, H., Dolg, M., Eliav, E., Kaldor, U.: On the performance of two-component energy-consistent pseudopotentials in atomic Fock-space coupled cluster calculations. J. Chem. Phys. 128, 024106-1–024106-9 (2008)Google Scholar
  49. 49.
    Figgen, D., Peterson, K.A., Dolg, M., Stoll, H.: Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf – Pt. J. Chem. Phys. 130, 164108-1–164108-12 (2009)Google Scholar
  50. 50.
    Frisch, M., et al.: GAUSSIAN, quantum chemistry program system. http://www.gaussian.com
  51. 51.
    Froese-Fischer, C.: The Hartree-Fock Method for Atoms, Wiley, New York (1977). MCHF77, atomic numerical multi-configuration HF program package. Dolg, M.: modifications for PP calculations/optimizations and WB calculationsGoogle Scholar
  52. 52.
    Fuentealba, P.: On the reliability of semiempirical pseudopotentials: dipole polarizability of the alkali atoms. J. Phys. B: At. Mol. Phys. 15, L555–L558 (1982)CrossRefGoogle Scholar
  53. 53.
    Fuentealba, P., Preuss, H., Stoll, H., v. Szentpály, L.: A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds. Chem. Phys. Lett. 89, 418–422 (1982)Google Scholar
  54. 54.
    Gutsev, G.L.: Numerical pseudopotentials within DV-Xα framework. Adv. Quant. Chem. 29, 137–157 (1997)CrossRefGoogle Scholar
  55. 55.
    Hafner, P., Schwarz, W.H.E.: Pseudopotential approach including relativistic effects. J. Phys. B: At. Mol. Phys. 11, 217–233 (1978)CrossRefGoogle Scholar
  56. 56.
    Hamann, D.R., Schlüter, M., Chiang, C.: Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494–1497 (1979)CrossRefGoogle Scholar
  57. 57.
    Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82, 270–282 (1985)Google Scholar
  58. 58.
    Hay, P.J., Wadt, W.R.: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985)Google Scholar
  59. 59.
    Hellmann, H.: A new approximation method in the problem of many electron electrons. J. Chem. Phys. 3, 61 (1935)CrossRefGoogle Scholar
  60. 60.
    Hess, B.A., Dolg, M.: Relativistic quantum chemistry with pseudopotentials and transformed Hamiltonians. In: B.A. Hess (ed.) Relativistic Effects in Heavy-Element Chemistry and Physics, Wiley Series in Theoretical Chemistry, Volume 12, ch. 3, pp. 89–122. Wiley, New York (2002)Google Scholar
  61. 61.
    Hurley, M.M., Pacios, L.F., Christiansen, P.A., Ross, R.B., Ermler, W.C.: Ab initio relativistic effective potentials with spin-orbit operators: II. K through Kr. J. Chem. Phys. 84, 6840–6853 (1986)CrossRefGoogle Scholar
  62. 62.
    Hülsen, M., Weigand, A., Dolg, M.: Quasirelativistic energy-consistent 4f-in-core pseudopotentials for tetravalent lanthanide elements. Theor. Chem. Acc. 122, 23–29 (2009)CrossRefGoogle Scholar
  63. 63.
    Huzinaga, S., Cantu, A.A.: Theory of separability of many-electron systems. J. Chem. Phys. 55, 5543–554 (1971)CrossRefGoogle Scholar
  64. 64.
    Huzinaga, S., McWilliams, D., Cantu, A.A.: Projection operators in Hartree-Fock theory. Adv. Quantum. Chem. 7, 187–220 (1973)CrossRefGoogle Scholar
  65. 65.
    Huzinaga, S., Seijo, L., Barandiarán, Z., Klobukowski, M.: The ab initio model potential method. Main group elements. J. Chem. Phys. 86, 2132–2145 (1987)Google Scholar
  66. 66.
    Igel, G., Wedig, U., Dolg, M., Fuentealba, P., Preuß, H., Stoll, H., Frey, R.: Cu and Ag as one-valence-electron atoms: Pseudopotential CI results for CuO and AgO. J. Chem. Phys. 81, 2737–2740 (1984)CrossRefGoogle Scholar
  67. 67.
    Igel-Mann, G., Stoll, H., Preuss, H.: Pseudopotentials for main group elements (IIIa through VIIa). Mol. Phys. 65, 1321–1328 (1988)CrossRefGoogle Scholar
  68. 68.
    Igel-Mann, G., Stoll, H., Preuss, H.: Pseudopotential study of monohydrides and monoxides of main group elements K through Br. Mol. Phys. 65, 1329–1336 (1988)CrossRefGoogle Scholar
  69. 69.
    Kahn, L.R., Goddard, W.A.: Ab initio effective potentials for use in molecular calculations. J. Chem. Phys. 56, 2685–2701 (1972)CrossRefGoogle Scholar
  70. 70.
    Kahn, L.R., Baybutt, P., Truhlar, D.G.: Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons. J. Chem. Phys. 65, 3826–3853 (1976)CrossRefGoogle Scholar
  71. 71.
    Kahn, L.R., Hay, P.J., Cowan, R.D.: Relativistic effects in ab initio effective core potentials for molecular calculations – applications to uranium atom. J. Chem. Phys. 68, 2386–2397 (1978)CrossRefGoogle Scholar
  72. 72.
    Kalvoda, S., Dolg, M., Flad, H.-J., Fulde, P., Stoll, H.: Ab initio approach to cohesive properties of GdN. Phys. Rev. B 57, 2127–2133 (1998)CrossRefGoogle Scholar
  73. 73.
    Katsuki, S., Huzinaga, S.: An effective Hamiltonian method for valence-electron molecular calculations. Chem. Phys. Lett. 152, 203–206 (1988)CrossRefGoogle Scholar
  74. 74.
    Klobukowski, M., Huzinaga, S., Sakai, Y.: Model core potentials: Theory and application. In: J. Leszczynski (ed.) Computional chemistry: Reviews of current trends, Volume 3, pp. 49–74. World Scientific, Singapore (1999)CrossRefGoogle Scholar
  75. 75.
    Kudin, K.N., Scuseria, G.E., Martin, R.L.: Hybrid density-functional theory and the insulating gap of UO2. Phys. Rev. Lett. 26, 266402-1–266402-4 (2002)Google Scholar
  76. 76.
    Küchle, W., Dolg, M., Stoll, H., Preuss, H.: Ab initio pseudopotentials for Hg through Rn. I. Parameter sets and atomic calculations. Mol. Phys. 74, 1245–1263 (1991)Google Scholar
  77. 77.
    Küchle, W., Dolg, M., Stoll, H., Preuss, H.: Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535–7542 (1994)Google Scholar
  78. 78.
    LaJohn, L.A., Christiansen, P.A., Ross, R.B., Atashroo, T., Ermler, W.C.: Ab initio relativistic effective potentials with spin-orbit operators. III. Rb through Xe. J. Chem. Phys. 87, 2812–2824 (1987)CrossRefGoogle Scholar
  79. 79.
    Lee, Y.S., Ermler, W.C., Pitzer, K.S.: Ab Initio Effective Core Potentials Including Relativistic Effects. I. Formalism and Applications to the Xe and Au Atoms. J. Chem. Phys. 67, 5861–5876 (1977)Google Scholar
  80. 80.
    Lim, I.S., Schwerdtfeger, P., Metz, B., Stoll, H.: All-electron and relativistic pseudopotential studies for the group 1 element polarisabilities from K to element 119. J. Chem. Phys. 122, 104103-1–104103-12 (2005)Google Scholar
  81. 81.
    Lim, I.S., Stoll, H., Schwerdtfeger, P.: Relativistic small-core energy-consistent pseudopotentials for the alkaline-earth elements Ca to Ra. J. Chem. Phys. 124, 034107-1–034107-9 (2006)Google Scholar
  82. 82.
    Louie, S.G., Froyen, S., Cohen, M.L.: Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B 26, 1738–1742 (1982)CrossRefGoogle Scholar
  83. 83.
    Martin, J.M., Sundermann, A.: Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe. J. Chem. Phys. 114, 3408–3420 (2001)CrossRefGoogle Scholar
  84. 84.
    McMurchie, L.E., Davidson, E.R.: Calculation of integrals over ab initio pseudopotentials. J. Comput. Chem. 4, 289–301 (1981)Google Scholar
  85. 85.
    Metz, B., Schweizer, M., Stoll, H., Dolg, M., Liu, W.: A small-core multiconfiguration Dirac-Hartree-Fock-adjusted pseudopotential for Tl. Application to TlX (X = F, Cl, Br, I). Theor. Chem. Acc. 104, 22–28 (2000)Google Scholar
  86. 86.
    Metz, B., Stoll, H., Dolg, M.: Small-core multiconfiguration Dirac-Hartree-Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO. J. Chem. Phys. 113, 2563–2569 (2000)CrossRefGoogle Scholar
  87. 87.
    Mochizuki, Y., Tatewaki, H.: Four-component relativistic calculations on the complexes between a water molecules and trivalent lanthanoid and actinoid ions. Chem. Phys. 273, 135–148 (2001)CrossRefGoogle Scholar
  88. 88.
    Moritz, A., Dolg, M.: Quasirelativistic 5f-in-core pseudopotential study of the actinocenes An(C8H8)2, An = Th-Pu. Chem. Phys. 327, 48–54 (2007)CrossRefGoogle Scholar
  89. 89.
    Moritz, A., Dolg, M.: Quasirelativistic energy-consistent 5f-in-core pseudopotentials for pentavalent and hexavalent actinide elements. Theor. Chem. Acc. 121, 297–306 (2008)CrossRefGoogle Scholar
  90. 90.
    Moritz, A., Cao, X., Dolg, M.: Quasirelativistic energy-consistent 5f-in-core pseudopotentials for trivalent actinide elements. Theor. Chem. Acc. 117, 473–481 (2007)CrossRefGoogle Scholar
  91. 91.
    Moritz, A., Cao, X., Dolg, M.: Quasirelativistic energy-consistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements. Theor. Chem. Acc. 118, 2763–2774 (2007)CrossRefGoogle Scholar
  92. 92.
    Mosyagin, N.S., Titov, A.V., Latajka, Z.: Generalized relativistic effective core potential: Gaussian expansion of potentials and pseudospinors for atoms Hg through Rn. Int. J. Quant. Chem. 63, 1107–1122 (1997)CrossRefGoogle Scholar
  93. 93.
    Mosyagin, N.S., Petrov, A.N., Titov, A.V., Tupitsyn, I.I.: Generalized RECP accounting for Breit effects: Uranium, plutonium and superheavy elements 112, 113, 114. In: J.P. Julien, J. Maruani, D. Mayou (eds.) Recent Advances in the Theory of Chemical and Physical Systems, Progress in Theoretical Chemistry and Physics, Part II, Volume 15, pp. 253–284. Springer, Berlin (2006)Google Scholar
  94. 94.
    Müller, W., Flesch, J., Meyer, W.: Treatment of intershell correlation effects in ab initio calculations by use of core polarization potentials. Method and application to alkali and alkaline earth atoms. J. Chem. Phys. 80, 3297–3310 (1984)Google Scholar
  95. 95.
    Nash, C.S., Bursten, B.E., Ermler, W.C.: Ab initio relativistic potentials with spin-orbit operators. VII. Am through element 118. J. Chem. Phys. 106, 5133–5142 (1994)Google Scholar
  96. 96.
    Nicklass, A., Dolg, M., Stoll, H., Preuß, H.: Ab initio energy-adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities. J. Chem. Phys. 102, 8942–8952 (1995)CrossRefGoogle Scholar
  97. 97.
    National Institute of Standards and Technology (NIST). http://www.nist.gov
  98. 98.
    Pacios, L.F., Christiansen, P.A.: Ab initio relativistic effective potentials with spin-orbit operators. I. Li through Ar. J. Chem. Phys. 82, 2664–2671 (1985)Google Scholar
  99. 99.
    Paulovič, J., Nakajima, T., Hirao, K., Seijo, L.: Third-order Douglas-Kroll ab initio model potential for actinide elements. J. Chem. Phys. 117, 3597–3604 (2002)CrossRefGoogle Scholar
  100. 100.
    Paulovič, J., Nakajima, T., Hirao, K., Lindh, R., Malmqvist, P.A.: Relativistic and correlated calculation on the ground and excited states of ThO. J. Chem. Phys. 119, 798–805 (2003)CrossRefGoogle Scholar
  101. 101.
    Peterson, K.A.: Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements. J. Chem. Phys. 119, 11099–11112 (2003)Google Scholar
  102. 102.
    Peterson, K.A., Puzzarini, C.: Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor. Chem. Acc. 114, 283–296 (2005)Google Scholar
  103. 103.
    Peterson, K.A., Figgen, D., Goll, E., Stoll, H., Dolg, M.: Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements. J. Chem. Phys. 119, 11113–11123 (2003)Google Scholar
  104. 104.
    Peterson, K.A., Figgen, D., Dolg, M., Stoll, H.: Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. J. Chem. Phys. 126, 124101-1–124101-12 (2007)Google Scholar
  105. 105.
    Phillips, J.C., Kleinman, L.: New method for calculating wave functions in crystals and molecules. Phys. Rev. 116, 287–294 (1959)CrossRefGoogle Scholar
  106. 106.
    Pittel, B, Schwarz, W.H.E.: Correlation energies from pseudopotential calculations. Chem. Phys. Lett. 46 121–124 (1977)Google Scholar
  107. 107.
    Pitzer, R.M.: ATMSCF, Atomic Electronic Structure Code. The Ohio State University, Columbus (2003)Google Scholar
  108. 108.
    Pitzer, R.M., Winter, N.W.: Electronic-structure methods for heavy-atom molecules. J. Phys. Chem. 92, 3061–3063 (1988)CrossRefGoogle Scholar
  109. 109.
    Preuss, H.: Untersuchungen zum kombinierten Näherungsverfahren. Z. Naturf. 10a, 365–373 (1955)Google Scholar
  110. 110.
    Preuss, H., Stoll, H., Wedig, U., Krüger, T.: A combination of pseudopotentials and density functionals. Int. J. Quant. Chem. 19, 113–130 (1981)CrossRefGoogle Scholar
  111. 111.
    Prodan, I.D., Scuseria, G.E., Martin, R.L.: Assessment of metageneralized gradient approximation and screened Coulomb hybrid density functionals on bulk actinide oxides. Phys. Rev. B. 73, 045104-10–045104-10 (2006)Google Scholar
  112. 112.
    Pyykkö, P., Stoll, H.: Relativistic Pseudopotential Calculations, 1993–June 1999. In: A. Hincliffe (ed.) R.S.C. Spec. Period. Rep., Chemical Modelling, Applications and Theory, Volume 1, pp. 239–305. Cambridge (2000)Google Scholar
  113. 113.
    Rakowitz, F., Marian, C.M., Seijo, L., Wahlgren U.: Spin-free relativistic no-pair ab initio core model potentials and valence basis sets for the transition metal elements Sc to Hg. I. J. Chem. Phys. 110, 3678–3686 (1999)CrossRefGoogle Scholar
  114. 114.
    Rakowitz, F., Marian, C.M., Seijo, L.: Spin-free relativistic no-pair ab initio core model potentials and valence basis sets for the transition metal elements Sc to Hg. II. J. Chem. Phys. 111, 10436–10443 (1999)CrossRefGoogle Scholar
  115. 115.
    Ross, R.B., Powers, J.M., Atashroo, T., Ermler, W.C., LaJohn, L.A., Christiansen, P.A.: Ab initio relativistic effective potentials with spin-orbit operators. IV. Cs through Rn. J. Chem. Phys. 93, 6654–6670 (1990)Google Scholar
  116. 116.
    Ross, R.B., Gayen, S., Ermler, W.C.: Ab initio relativistic effective potentials with spin-orbit operators. V. Ce through Lu. J. Chem. Phys. 100, 8145–8155 (1994)Google Scholar
  117. 117.
    Roy, L.E., Hay, P.J., Martin, R.L.: Revised basis sets for the LANL effective vore potentials. J. Chem. Theor. Comput. 4, 1029–1031 (2008)CrossRefGoogle Scholar
  118. 118.
    Sakai, Y.: New developments in the model potential method. J. Chem. Phys. 75, 1303–1308 (1981)CrossRefGoogle Scholar
  119. 119.
    Sakai, Y., Huzinaga, S.: The use of model potentials in molecular calculations. I. J. Chem. Phys. 86, 2132–2145 (1982)Google Scholar
  120. 120.
    Smit, M.J.: Multicenter integrals over polarization potential operators. Int. J. Quant. Chem. 73, 403–416 (1999)CrossRefGoogle Scholar
  121. 121.
    Schwerdtfeger, P.: Relativistic effects in molecules: Pseudopotential calculations for TlH+, TlH and TlH3. Phys. Scr. 36, 453–459 (1987)CrossRefGoogle Scholar
  122. 122.
    Schwerdtfeger, P.: Relativistic Pseudopotentials. In: U. Kaldor, S. Wilson (eds.) Progress in Theoretical Chemistry and Physics – Theoretical chemistry and physics of heavy and superheavy element, pp. 399–438. Kluwer, Dordrecht (2003)Google Scholar
  123. 123.
    Schwerdtfeger, P., Silberbach, H.: Multicenter integrals over long-range operators using Cartesian Gaussian functions. Phys. Rev. A 37, 2834–2842 (1988). Erratum: ibidem, 42, 665 (1990)Google Scholar
  124. 124.
    Schwerdtfeger, P., v.Szentpaly, L., Vogel, K., Silberbach, H., Stoll, H., Preuss, H.: Relativistic and correlation effects in pseudopotential calculations for Br, I, HBr, HI, Br2 and I2. J. Chem. Phys. 84, 1606–1612 (1986)Google Scholar
  125. 125.
    Schwerdtfeger, P., v.Szentpaly, L., Stoll, H., Preuss, H.: Relativistic pseudopotential calculations for HBr+, HBr, HBr, HI+, HI, HI. J. Chem. Phys. 87, 510–513 (1987)Google Scholar
  126. 126.
    Seijo, L., Barandiarán, Z.: The ab initio model potential method: a common strategy for effective core potential and embedded cluster calculations. In: J. Leszczynski (ed.) Computional chemistry: Reviews of current trends, Volume 4, pp. 55–152. World Scientific, Singapore (1999)CrossRefGoogle Scholar
  127. 127.
    Seth, M., Schwerdtfeger, P., Dolg, M.: The chemistry of the superheavy elements. I. Pseudopotentials for 111 and 112 and relativistic coupled cluster calculations for (112)H+, (112)F2 and (112)F4. J. Chem. Phys. 106, 3623–3632 (1997)Google Scholar
  128. 128.
    Sheu, J.-H., Lee, S.-L., Dolg, M.: Calibration of relativistic energy-consistent small-core pseudopotentials for 3d-transition metals. J. Chin. Chem. Soc. 50, 583–592 (2003)Google Scholar
  129. 129.
    Smallwood, C.J., Larsen, R.E., Glover, W.J., Schwartz, B.J.: A computationally efficient exact pseudopotential method. I. Analytic reformulation of the Phillips-Kleinman theory. J. Chem. Phys. 125, 074102-1–074102-9 (2006)Google Scholar
  130. 130.
    Smallwood, C.J., Meija, C.N., Glover, W.J., Larsen, R.E., Schwartz, B.J.: A computationally efficient exact pseudopotential method. II. Application to the molecular pseudopotential of an excess electron interacting with tetrahydrofuran (THF). J. Chem. Phys. 125, 074103-1–074103-9 (2006)Google Scholar
  131. 131.
    Stevens, W.J., Basch, H., Krauss, M.: Compact effective potentials and efficient shared-exponent basis sets for the first- and second-row atoms. J. Chem. Phys. 81, 6026–6033 (1984)CrossRefGoogle Scholar
  132. 132.
    Stevens, W.J., Krauss, M., Basch, H., Jasien, P.J.: Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms. Can. J. Chem. 70, 612–630 (1992)CrossRefGoogle Scholar
  133. 133.
    Stoll, H., Fuentealba, P., Dolg, M., Flad, J., v. Szentpály, L., Preuß, H.: Cu and Ag as one-valence-electron atoms: Pseudopotential results for Cu2, Ag2, CuH, AgH, and the corresponding cations. J. Chem. Phys. 79, 5532–5542 (1983)Google Scholar
  134. 134.
    Stoll, H., Fuentealba, P., Schwerdtfeger, P., Flad, J., v. Szentpály, L., Preuß, H.: Cu and Ag as one-valence-electron atoms: CI results and quadrupole corrections for Cu2, Ag2, CuH, AgH. J. Chem. Phys. 81, 2732–2736 (1984)Google Scholar
  135. 135.
    Stoll, H., Metz, B., Dolg, M.: Relativistic energy-consistent pseudopotentials — recent developments. J. Comput. Chem. 23, 767–778 (2002)CrossRefGoogle Scholar
  136. 136.
    Stoll, H., et al.: Stuttgart-Cologne PPs. http://www.theochem.uni-stuttgart.de/pseudopotentials
  137. 137.
    Teichteil, C., Malrieu, J.P., Barthelat, J.C.: Non-empirical pseudopotentials for molecular calculations. 2. basis set extension and correlation effects on X2 molecules (X = F, Cl, Br, I). Mol. Phys. 33, 181–197 (1977)Google Scholar
  138. 138.
    Titov, A.V., Mosyagin, N.S.: Generalized relativistic effective core potential: Theoretical ground. Int. J. Quant. Chem. 71, 359–401 (1999)CrossRefGoogle Scholar
  139. 139.
    Titov, A.V., Mosyagin, N.S.: The generalized relativistic effective core potential method: Theory and calculations. Russ. J. Phys. Chem. 74, S376–S387 (2000)Google Scholar
  140. 140.
    Titov, A.V., Mosyagin, N.S., Isaev, T.A., Petrov, A.N.: Accuracy and efficiency of modern methods for electronic structure calculation on heavy- and superheavy-elements compounds. Phys. At. Nucl. 66, 1188–1198 (2003)CrossRefGoogle Scholar
  141. 141.
    Tsuchiya, T., Nakajima, T., Hirao, K., Seijo, L.: A third-order Douglas-Kroll ab initio model potential for the lanthanides. Chem. Phys. Lett. 361, 334–340 (2002)CrossRefGoogle Scholar
  142. 142.
    Wadt, W.R., Hay, P.J.: Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284–298 (1985)Google Scholar
  143. 143.
    Wang, Y., Dolg, M.: Pseudopotential study of the ground and excited states of Yb2. Theor. Chem. Acc. 100, 124–133 (1998)CrossRefGoogle Scholar
  144. 144.
    Wedig, U., Dolg, M., Stoll, H.: Energy-adjusted pseudopotentials for transition-metal elements. In: A. Veillard (ed.) Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, NATO ASI Series, Series C, Mathematical and Physical Sciencies, Volume 176, pp. 79–89. Reidel, Dordrecht (1986)Google Scholar
  145. 145.
    Weeks, J.D., Rice, S.A.: Use of pseudopotentials in atomic-structure calculations. J. Chem. Phys. 49, 2741–2755 (1968)CrossRefGoogle Scholar
  146. 146.
    Weigand, A., Cao, X., Vallet, V., Flament, J.-P., Dolg, M.: Multiconfiguration Dirac-Hartree-Fock adjusted energy-consistent pseudopotential for uranium: Spin-orbit configuration interaction and Fock-space coupled-cluster study of U4 + and U5 +. J. Phys. Chem. A 113, 11509–11516 (2009)CrossRefGoogle Scholar
  147. 147.
    Werner, H.-J., Knowles, P.J., et al.: MOLPRO, quantum chemistry program system. http://www.molpro.net
  148. 148.
    Wiebke, J., Moritz, A., Cao, X., Dolg, M.: Approaching actinide (III) hydration from first principles. Phys. Chem. Chem. Phys. 9, 459–465 (2007)CrossRefGoogle Scholar
  149. 149.
    Wildman, S.A., DiLabio, G.A., Christiansen, P.A.: Accurate relativistic effective potentials for the sixth-row main group elements. J. Chem. Phys. 107, 9975–9979 (1997)CrossRefGoogle Scholar
  150. 150.
    Wood, J.H., Boring, A.M.: Improved Pauli Hamiltonian for local-potential problems. Phys. Rev. B 18, 2701–2711 (1978)CrossRefGoogle Scholar
  151. 151.
    Yang, J., Dolg, M.: Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations. Theor. Chem. Acc. 113, 212–224 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institut für Theoretische Chemie, Universität zu KölnKölnGermany

Personalised recommendations