Advertisement

Relativistic Effects and the Chemistry of the Heavier Main Group Elements

  • John S. Thayer
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 10)

Abstract

This chapter reviews possible experimental aspects of relativistic effects in heavier Main Group elements and their compounds. Attention is focused on the sixth, seventh and eighth Period elements, for which the relativistic contribution to their physical and chemical properties is significant. Superheavy elements through Z = 120 are also discussed. This review may increase interest of theoreticians in chemistry-oriented problems that require use of relativistic methods of quantum chemistry.

Keywords

Relativistic effects Sixth seventh and eight periodic elements Superheavy elements 

References

  1. 1.
    Thayer, J.S.: Relativistic effects and the chemistry of the heaviest main-group elements. J. Chem. Educ. 82, 1721–1729 (2005)CrossRefGoogle Scholar
  2. 2.
    Pitzer, K.S.: Relativistic effects on chemical properties. Acc. Chem. Res. 12, 271–276 (1977)CrossRefGoogle Scholar
  3. 3.
    Pyykkö, P., Desclaux, J.P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1977)CrossRefGoogle Scholar
  4. 4.
    Norrby, L.J.: Why is mercury liquid? J. Chem. Educ. 68, 110–113 (1991)CrossRefGoogle Scholar
  5. 5.
    Hess, B.A.: Relativistic Effects in Heavy-Element Chemistry and Physics. Wiley, Chichester (UK) (2003)Google Scholar
  6. 6.
    Balasubramanian, K.: Relativistic Effects in Chemistry. Wiley, New York (1997)Google Scholar
  7. 7.
    Schwerdtfeger, P.: Relativistic effects in molecular structures of s- and p-Block elements. In: A. Domenicano, I. Hargittai (eds.) Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules and Crystals, pp. 169–190. Kluwer, Dordrecht, The Netherlands (2002)Google Scholar
  8. 8.
    Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)CrossRefGoogle Scholar
  9. 9.
    Schwerdtfeger, P. (ed.).: Relativistic Electronic Structure Theory, vol. 2. Elsevier, Amsterdam, The Netherlands (2004)Google Scholar
  10. 10.
    Douglas, B., McDaniel, D.H., Alexander, J.J.: Concepts and Models of Inorganic Chemistry, 3rd edn., pp. 10–12. Wiley, New York (1994)Google Scholar
  11. 11.
    Onoe, J.: Atomic number dependence of relativistic effects on chemical bonding. Adv. Quantum Chem. 37, 311–323 (2000)CrossRefGoogle Scholar
  12. 12.
    Desclaux, J.P.: Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120. Atom. Data Nucl. Data 12, 374–383 (1973)CrossRefGoogle Scholar
  13. 13.
    Schwerdtfeger, P.: Relativistic effects in properties of gold. Heteroatom Chem. 13, 578–584 (2002)CrossRefGoogle Scholar
  14. 14.
    Huang, R.H., Ward, D.L., Kuchenmeister, M.E., Dye, J.L.: The crystal structures of two cesides show that Cs is the largest monatomic ion. J. Am. Chem. Soc. 109, 5561–5563 (1987)CrossRefGoogle Scholar
  15. 15.
    Ichimura, A.S., Huang, R.H., Xie, Q., et al.: One-dimensional zig-zag chains of Cs: The structure and properties of Li+ (Cryptand[2.1.1])Cs and Cs+ (Cryptand[2.2.1])Cs. J. Phys. Chem. B 110, 12293–12301 (2006)CrossRefGoogle Scholar
  16. 16.
    Jansen, M.: Effects of relativistic motion on the chemistry of gold and platinum. Solid State Sci. 7, 1464–1474 (2005)CrossRefGoogle Scholar
  17. 17.
    Schäfer, S., Mehring, M., Schäfer, R.: Polarizabilities of Ba and Ba2: Comparison of molecular beam experiments with relativistic quantum chemistry. Phys. Rev. A 76, 052515/1–5 (2007)Google Scholar
  18. 18.
    Karpov, A., Nuss, J., Wedig, U., Jansen, M.: Cs2Pt: A Platinide(-II) exhibiting complete charge separation. Angew. Chem. Int. Ed. Engl. 42, 4818–4821 (2003)CrossRefGoogle Scholar
  19. 19.
    Karpov, A., Nuss, J., Wedig, U., Jansen, M.: Covalently bonded [Pt] chains in BaPt: Extension of the Zintl-Klemm concept to anionic transition metals? J. Am. Chem. Soc. 126, 14123–14128 (2004)CrossRefGoogle Scholar
  20. 20.
    Ghilane, J., Lagrost, C., Guilloux-Viry, M., et al.: Spectroscopic evidence of platinum negative oxidation states at electrochemically reduced surfaces. J. Phys. Chem. C 111, 5701–5707 (2007)CrossRefGoogle Scholar
  21. 21.
    Bartlett, N., Lohmann, D.H.: Fluorides of the noble metals. II. Dioxygenyl hexafluoroplatinate(V) \({\mathrm{O}{}_{2}}^{+}[{\mathrm{PtF}{}_{6}}^{-}]\). J. Chem. Soc. 5253–5261 (1962)Google Scholar
  22. 22.
    Bartlett, N.: Xenon hexafluoroplatinate(V) \({\mathrm{Xe}}^{+}[{\mathrm{PtF}{}_{6}}^{-}]\). Proc. Chem. Soc. (June 1962) 218 (1962)Google Scholar
  23. 23.
    Alvarez-Thon, L., David, J., Arratia-Pérez, R., Seppelt, K.: Ground state of octahedral platinum hexafluoride. Phys. Rev. A 77, 034502/1–4 (2008)CrossRefGoogle Scholar
  24. 24.
    David, J., Fuentealba, P., Restrepo, A.: Relativistic effects on the hexafluorides of group 10 metals. Chem. Phys. Lett. 457, 42–44 (2008)CrossRefGoogle Scholar
  25. 25.
    Wesendrup, R., Schwerdtfeger, P.: Structure and electron affinity of platinum fluorides. Inorg. Chem. 40, 3351–3354 (2001)CrossRefGoogle Scholar
  26. 26.
    Pernpointer, M., Cederbaum, L.S.: PtF6 2 − dianion and its detachment spectrum: A fully relativistic study. J. Chem. Phys. 126, 144310/1–7 (2007)Google Scholar
  27. 27.
    Bartlett, N., Lohmann, D.H.: Fluorides of the noble metals. Part III. The fluorides of platinum. J. Chem. Soc. 619–626 (1964)Google Scholar
  28. 28.
    Bare, W.D., Citra, A., Chertihin, G.V., Andrews, L.: Reaction of laser-ablated platinum and palladium atoms with dioxygen. Matrix infrared spectra and density functional calculations of platinum oxides and palladium complexes. J. Phys. Chem. A 103, 5456–5462 (1999)Google Scholar
  29. 29.
    Ono, Y., Taketsugu, T., Noro, T.: Theoretical study of Pt-Ng and Ng-Pt-Ng (Ng = Ar,Kr,Xe). J. Chem. Phys. 123, 204321/1–5 (2005)CrossRefGoogle Scholar
  30. 30.
    Boča, R.: Platinum-centered octakis(Triphenylphosphinegold) clusters: A relativistic MO study. Int. J. Quantum Chem. 57, 735–740 (1996)CrossRefGoogle Scholar
  31. 31.
    Xia, F., Cao, Z.: Relativistic DFT studies of dehydrogenation of methane by Pt cationic clusters: Cooperative effect of bimetallic clusters. J. Phys. Chem. A 110, 10078–10083 (2006)CrossRefGoogle Scholar
  32. 32.
    Taylor, S., Lemire, G.W., Hamrick, Y.M., et al.: Resonant two-photon ionization spectroscopy of jet-cooled Pt2. J. Chem. Phys. 89, 5517–5523 (1988)CrossRefGoogle Scholar
  33. 33.
    Pyykkö, P.: Relativity, gold, closed-shell interactions and CsAu ∙ NH3. Angew. Chem. Int. Ed. Engl. 41, 3573–3578 (2002)CrossRefGoogle Scholar
  34. 34.
    Huang, R.H., Huang, S.Z., Dye, J.L.: Syntheses and structures of six compounds that contain the sodium anion. J. Coord. Chem. 46, 13–31 (1998)CrossRefGoogle Scholar
  35. 35.
    Tran, N.E., Lagowski, J.J.: Metal ammonia solutions: Solutions containing argentide ions. Inorg. Chem. 40, 1067–1068 (2001)CrossRefGoogle Scholar
  36. 36.
    Mudring, A.V., Jansen, M., Daniels, J., Krämer, S., Mehring, M., Ramalho, J.P.P., Romero, A.H., Parrinello, M.: Cesiumauride ammonia(1/1), CsAu ∙ NH3: A crystalline analogue to alkali metals dissolved in ammonia? Angew. Chem. Int. Ed. Engl. 41, 120–124 (2002)CrossRefGoogle Scholar
  37. 37.
    Mudring, A.V., Jansen, M.: Base-induced disproportionation of elemental gold. Angew. Chem. Int. Ed. Engl. 39, 3066–3067 (2000)CrossRefGoogle Scholar
  38. 38.
    Belpassi, L., Tarantelli, F., Sgamellotti, A., Quiney, H.M.: The electronic structure of alkali aurides. A four-component Dirac-Kohn-Sham study. J. Phys. Chem. A 110, 4543–4554 (2006)Google Scholar
  39. 39.
    Nuss, H., Jansen, M.: [Rb([18]crown-6)(NH3)3]Au ∙ NH3: Gold as acceptor in N-H⋯Au hydrogen bonds. Angew. Chem. Int. Ed. Engl. 45, 4369–4371 (2006)CrossRefGoogle Scholar
  40. 40.
    Barysz, M., Leszczyński, J., Bilewicz, A.: Hydrolysis of the heavy metal cations: Relativistic effects. Phys. Chem. Chem. Phys. 6, 4553–4557 (2004)CrossRefGoogle Scholar
  41. 41.
    Lee, D.-K., Lim, I.S., Lee, Y.S., Jeung, G.-H.: Relativistic effects on the ground state properties of group 1 and group 11 cyanides estimated from quantum chemical calculations. Int. J. Mass Spectrom. 271, 22–29 (2008)CrossRefGoogle Scholar
  42. 42.
    Zaleski-Ejgierd, P., Patzschke, M., Pyykkö, P.: Structure and bonding of the MCN moleucles, M = Cu,Ag,Au,Rg. J. Chem. Phys. 128, 224303/1–11 (2008)CrossRefGoogle Scholar
  43. 43.
    Kullie, O., Zhang, H., Kolb, D.: Relativistic and non-relativistic local-density functional benchmark results and investigations on the dimers Cu2 Ag2 Au2 Rg2. Chem. Phys. 351, 106–110 (2008)CrossRefGoogle Scholar
  44. 44.
    Hwang, I., Seppelt, K.: Gold pentafluoride: Structure and fluoride ion affinity. Angew. Chem. Int. Ed. Engl. 40, 3690–3693 (2001)CrossRefGoogle Scholar
  45. 45.
    Riedel, S., Kaupp, M.: Has AuF7 been made? Inorg. Chem. 45, 1228–1234 (2006)CrossRefGoogle Scholar
  46. 46.
    Himmel, D., Riedel, S.: After 20 years, theoretical evidence that “AuF7” is actually AuF5 ∙ F2. Inorg. Chem. 46, 5338–5342 (2007)CrossRefGoogle Scholar
  47. 47.
    Drews, T., Seidel, S., Seppelt, K.: Gold-Xenon complexes. Angew. Chem. Int. Ed. Engl. 41, 454–456 (2002)CrossRefGoogle Scholar
  48. 48.
    Hwang, I., Seidel, S., Seppelt, K.: Gold(I) and mercury(II) xenon complexes. Angew. Chem. Int. Ed. Engl. 42; 4392–4395 (2003)CrossRefGoogle Scholar
  49. 49.
    Seppelt, K.: Metal-Xenon complexes. Z. Anorg. Allg. Chem. 629, 2427–2430 (2003)CrossRefGoogle Scholar
  50. 50.
    Pyykkö, P.: Predicted chemical bonds between rare gases and Au+. J. Am. Chem. Soc. 117, 2067–2070 (1995)CrossRefGoogle Scholar
  51. 51.
    Belpassi, L., Infante, I., Tarantelli, F., Visscher, L.: The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods. J. Am. Chem. Soc. 130, 1048–1060 (2008)CrossRefGoogle Scholar
  52. 52.
    Lovallo, C.C., Klobukowski, M.: Transition metal-noble gas bonding: The next frontier. Chem. Phys. Lett. 368, 589–593 (2003)CrossRefGoogle Scholar
  53. 53.
    Berski, S., Latajka, Z., Andrés, J.: The nature of the Au-Rg bond in the [AuRg4]2 + (Rg = Ar,Kr,Xe) molecules. Chem. Phys. Lett. 356, 483–489 (2002)CrossRefGoogle Scholar
  54. 54.
    Zeng, T., Klobukowski, M.: Relativistic model core potential study of the Au+ Xe system. J. Phys. Chem. A 112, 5236–5242Google Scholar
  55. 55.
    Boyen, H.G., Kästle, G., Weigl, F., et al.: Oxidation-resistant Gold-55 clusters. Science 297, 1533–1536 (2002)CrossRefGoogle Scholar
  56. 56.
    Dhingra, S.S., Haushalter, R.C.: Synthesis and structure of the new gold polytelluride anion [Au2Te12]4-. Inorg. Chem. 33, 2735–2737 (1994)CrossRefGoogle Scholar
  57. 57.
    Huang, W., Ji, M., Dong, C.-D., et al.: Relativistic effects and the unique low-symmetry structures of gold nanoclusters. ACSNANO 2, 897–904 (2008)CrossRefGoogle Scholar
  58. 58.
    Lordeiro, R.A., Guimarăes, F.F., Belchior, J.C., Johnston, R.L.: Determination of main structural compositions of nanoalloy clusters of CuxAuy (x + y ? 30) using a genetic algorithm approach. Int. J. Quantum Chem. 95, 112–125 (2003)CrossRefGoogle Scholar
  59. 59.
    Scherbaum, F., Grohmann, A., Huber, B., Krüger, C., Schmidbaur, H.: Aurophilicity as a consequence of relativistic effects. Angew. Chem. Int. Ed. Engl. 27, 1544–1546 (1988)CrossRefGoogle Scholar
  60. 60.
    Pyykkö, P.: Strong closed-shell interactions in inorganic chemistry. Chem. Rev. 97, 597–636 (1997)CrossRefGoogle Scholar
  61. 61.
    Bardají, M., Laguna, A.: Gold chemistry: The aurophilic attraction. J. Chem. Educ. 76, 201–203 (1999)CrossRefGoogle Scholar
  62. 62.
    Codina, A., Fernández, E.J., Jones, P.G., et al.: Do aurophilic interactions compete against hydrogen bonds? Experimental evidence and rationalization based on ab Initio calculations. J. Am. Chem. Soc. 124, 6781–6786 (2002)CrossRefGoogle Scholar
  63. 63.
    Pyykkö, P., Runeberg, N.: Icosahedral WAu12: A predicted closed-shell species, stabilized by aurophilic attraction and relativity and in accordance with the 18-electron rule. Angew. Chem. Int. Ed. Engl. 41, 2174–2176 (2002)CrossRefGoogle Scholar
  64. 64.
    Li, X., Kiran, B., Li, J., et al.: Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. Angew. Chem. Int. Ed. Engl. 41, 4786–4789 (2002)CrossRefGoogle Scholar
  65. 65.
    Schwerdtfeger, P., Lein, M., Krawczyk, R.P., Jacob, C.R.: The adsorption of CO on charged and neutral Au and Au2: A comparison between wave-function based and density functional theory. J. Chem. Phys. 128, 124302/1–9 (2008)CrossRefGoogle Scholar
  66. 66.
    Chang, C.M., Cheng, C., Wei, C.M.: CO oxidation on unsupported Au55, Ag55 and Au25Ag30 nanoclusters. J. Chem. Phys. 128, 124710/1–4 (2008)Google Scholar
  67. 67.
    Neisler, R.P., Pitzer, K.S.: The dipositive dimeric ion Hg2 2 +: A theoretical study. J. Phys. Chem. 91, 1084–1087 (1987)CrossRefGoogle Scholar
  68. 68.
    Horváth, O., Mikó, I.: Photoredox chemistry of mercury ions in aqueous ethanol solutions. J. Photochem. Photobiol. 128, 33–38 (1999)CrossRefGoogle Scholar
  69. 69.
    Schwerdtfeger, P., Boyd, P.D.W., Brienne, S., et al.: The mercury-mercury bond in inorganic and organometallic compounds. A theoretical study. Inorg. Chim. Acta. 213, 233–246 (1993)CrossRefGoogle Scholar
  70. 70.
    Liao, M.-S., Zhang, Q.: Hg-Hg bonding in mercurous Hg(I)2L2 compounds: The influence of ligand electronegativity. J. Mol. Struct. (Theochem). 358, 195–203 (1995)CrossRefGoogle Scholar
  71. 71.
    Singh, N.B., Marshall, G., Gottlieb, M., et al.: Purification and characterization of mercurous halides. J. Cryst. Growth 106, 62–67 (1990)Google Scholar
  72. 72.
    Catalano, V.J., Malwitz, M.A., Noll, B.C.: Pd(0) and Pt(0) metallo-cryptands encapsulating a spinning mercurous dimer. Inorg. Chem. 41, 6553–6559 (2002)CrossRefGoogle Scholar
  73. 73.
    Kunkely, H., Vogler, A.: On the origin of the photoluminescence of mercurous chloride. Chem. Phys. Lett. 240, 31–34 (1995)CrossRefGoogle Scholar
  74. 74.
    Ulvenlund, S., Rosdahl, J., Fischer, A., Schwerdtfeger, P., Kloo, L.: Hard acid and soft acid base stabilisation of di- and trimercury cations in benzene solution – a spectroscopic, X-ray scattering and quantum chemical study. Eur. J. Inorg. Chem. 633–642 (1999)Google Scholar
  75. 75.
    Gaston, N., Schwerdtfeger, P., von Issendorff, B.: Photoabsorption spectra of cationic mercury clusters. Phys. Rev. A 74, 043203/1–9 (2006)CrossRefGoogle Scholar
  76. 76.
    Olenev, A.V., Shevelkov, A.V.: The Hg3 2 + group as a framework unit in a host-guest compound. Angew. Chem. Int. Ed. Engl. 40, 2353–2354 (2001)CrossRefGoogle Scholar
  77. 77.
    Autschbach, J., Igna, C.D., Ziegler, T.: A theoretical study of the large Hg-Hg spin coupling constants in Hg2 2 +, Hg3 2 +, and Hg2 2 +– crown ether complexes. J. Am. Chem. Soc. 125, 4937–4942 (2003)CrossRefGoogle Scholar
  78. 78.
    Mason, W.R.: MCD spectra for metal-centered transitions in the Hg3(dppm)3 4 + cluster complex. Inorg. Chem. 36, 1164–1167 (1997)CrossRefGoogle Scholar
  79. 79.
    Mühlecker-Knoepfler, A., Ellmerer-Müller, E., Konrat, R., et al.: Synthesis and crystal structure of the subvalent mercury cluster [triangulo-Hg3(μ-dmpm)4] [O3SCF3]4. J. Chem. Soc., Dalton Trans. 1607–1610 (1997)Google Scholar
  80. 80.
    Meyer, G., Nolte, M., Berners, R.: Nanometer channels and cages within the extended basic mercurous cations [(Hg2)3(OH)2]4 + and [(Hg2)2O]2 + Z. Anorg. Allg. Chem. 632, 2184–2186 (2006)CrossRefGoogle Scholar
  81. 81.
    Shevelkov, A.V., Mustyakimov, M.Y., Dikarev, E.V., Popovkin, B.A.: (Hg2P)2HgBr4: A phosphorus analogue of the Millon’s base salts. J. Chem. Soc. Dalton Trans. 147–148 (1996)Google Scholar
  82. 82.
    Deming, R.L., Allred, A.L., Dahl, A.R., et al.: Tripositive mercury. Low temperature electrochemical oxidation of 1,4,8,11-Tetraazacyclo-tetradecanemercury(II) tetrafluoroborate. J. Am. Chem. Soc. 98, 4132–4137 (1976)CrossRefGoogle Scholar
  83. 83.
    Kaupp, M., Dolg, M., Stoll, H., von Schnering, H.G.: Oxidation state + IV in group 12 chemistry. Ab Initio study of Zinc(IV), Cadmium(IV) and Mercury(IV) fluorides. Inorg. Chem. 33, 2122–2131 (1994)CrossRefGoogle Scholar
  84. 84.
    Liu, W., Franke, R., Dolg, M.: Relativistic abIinitio and density functional theory calculations on the mercury fluorides: Is HgF4 thermodynamically stable? Chem. Phys. Lett. 302, 231–239 (1999)CrossRefGoogle Scholar
  85. 85.
    Riedel, S., Straka, M., Kaupp, M.: Can weakly coordinating anions stabilize mercury in its oxidation state + IV? Chem. Eur. J. 11, 2743–2755 (2005)CrossRefGoogle Scholar
  86. 86.
    Riedel, S., Kaupp, M., Pyykkö, P.: Quantum chemical study of trivalent group 12 fluorides. Inorg. Chem. 47, 3379 (2008)CrossRefGoogle Scholar
  87. 87.
    Wang, X., Andrews, L., Riedel, S., Kaupp, M.: Mercury is a transition metal: The first experimental evidence for HgF4. Angew. Chem. Int. Ed. Engl. 46, 8371–8375 (2007)CrossRefGoogle Scholar
  88. 88.
    Pyykkö, P., Straka, M., Patzschke, M.: HgH4 and HgH6: Further candidates for high-valent mercury compounds. Chem. Commun. 1728–1729 (2002)Google Scholar
  89. 89.
    Bronger, W.: Complex transition metal hydrides. Angew. Chem. Int. Ed. Engl. 30, 759–768 (1991)CrossRefGoogle Scholar
  90. 90.
    Wang, X., Andrews, L.: Gold is noble but gold hydride anions are stable. Angew. Chem. Int. Ed. Engl. 42, 5201–5206 (2003)CrossRefGoogle Scholar
  91. 91.
    Andrews, l., Wang, X.: Infrared spectra and structures of the stable CuH2 , AgH2 , AuH2 and AuH4 anions and the AuH2 molecule. J. Am. Chem. Soc. 125, 11751–11760 (2003)CrossRefGoogle Scholar
  92. 92.
    Burroughs, P., Evans, S., Hamnett, A., et al.: Evidence from the photoelectron spectra of some mercury(II) compounds for the involvement of the inner 5d electrons in covalent bonding JCS. Chem. Comm. 921–922 (1974)Google Scholar
  93. 93.
    Deiseroth, H.J.: Discrete and extended metal clusters in alloys with mercury and other group 12 elements. In: M. Driess, H. Nöth (eds.) Molecular Clusters of the Main Group Elements, pp. 169–187. Wiley, Weinheim (2004)Google Scholar
  94. 94.
    Tkachuk, A.V., Mar, A.: Alkaline-earth metal mercury intermediates. Inorg. Chem. 47, 1313–1318 (2008)CrossRefGoogle Scholar
  95. 95.
    Tomilin, O.B., Akamova, L.V., Yudin, P.A., Terekhin, II.: Electronic structure and stability of bulky mercury clusters. J. Struct. Chem. 42, 519–525 (2001)CrossRefGoogle Scholar
  96. 96.
    Moyano, G.E., Wesendrup, R., Söhnel, T., Schwerdtfeger, P.: Properties of small- to medium-sized mercury clusters from a combined ab initio, density-functional, and simulated-annealing study. Phys. Rev. Lett. 89, 103401/1–4 (2002)CrossRefGoogle Scholar
  97. 97.
    Schwerdtfeger, P., Heath, G.A., Dolg, M., Bennett, M.A.: Low valencies and periodic trends in heavy element chemistry. A theoretical study of relativistic effects and electron correlation effects in group 13 and period 6 hydrides and halides. J. Am. Chem. Soc. 114, 7518–7527 (1992)CrossRefGoogle Scholar
  98. 98.
    Dong, Z.C., Corbett, J.D.: CsTl: A new example of tetragonally compressed Tl6 6 − octahedra. Electronic effects and packing requirements in the diverse structures of ATl (A = Li, Na, K, Cs). Inorg. Chem. 35, 2301–2306 (1996)CrossRefGoogle Scholar
  99. 99.
    Costa Cabral, B.J., Martins, J.L.: Ab initio molecular dynamics of liquid K-Tl. J. Non-cryst. Solids 312–314, 69–73 (2002)CrossRefGoogle Scholar
  100. 100.
    Kaskeff, S., Dong, Z.C., Klem, M.T., Corbett, J.D.: Synthesis and structure of the metallic K6Tl17: A layered tetrahedral star structure related to that of Cr3Si. Inorg. Chem. 42, 1835–1841 (2003)CrossRefGoogle Scholar
  101. 101.
    Seo, D.K., Corbett, J.D.: Synthesis, structure and bonding of BaTl3: An unusual competition between clusters and classical bonding in the thallium layers. J. Am. Chem. Soc. 124, 415–420 (2002)CrossRefGoogle Scholar
  102. 102.
    Li, B., Corbett, J.D.: Na9K16Tl∼ 25: A new phase containing naked icosahedral cluster fragments Tl9 9 −. J. Clust. Sci. 19, 331–340 (2008)CrossRefGoogle Scholar
  103. 103.
    Thiele, G., Rink, W.: Die Konstitution des valenzgemischten Thalliumchlorid-bromids und ber Mischkristalle im system TlCl2 ∕ TlBr2 Z. Anorg. Allg. Chem. 414, 47–55 (1975)CrossRefGoogle Scholar
  104. 104.
    Szabó, A., Kovács, A., Frenking, G.: Theoretical studies of inorganic compounds. 34. Energy decomposition analysis of E-E bonding in planar and perpendicular X2E-EX2 (E = B,Al,Ga,In,Tl; X = H,F,Cl,Br,I). Z. Anorg. Allg. Chem. 631, 1803–1809 (2005)CrossRefGoogle Scholar
  105. 105.
    Uhl, W.: Organoelement compounds possessing Al-Al, Ga-Ga, In-In, and Tl-Tl single bonds. In: R. West, A.F. Hill (eds.) Advances in Organometallic Chemistry, vol. 51, pp. 53–108. Academic Press, Amsterdam (2004)Google Scholar
  106. 106.
    Dronskowski, R., Simon, A.: PbMo5O8 and Tl0. 8Sn0. 6Mo7O11, novel clusters of molybdenum and thallium. Angew. Chem. Int. Ed. Engl. 28, 758–760 (1989)CrossRefGoogle Scholar
  107. 107.
    Henkel, S., Klinkhammer, K.W., Schwarz, W.: Tetrakis(hypersilyl)-dithallium(Tl-Tl): A divalent thallium compound. Angew. Chem. Int. Ed. Engl. 33, 681–683 (1994)CrossRefGoogle Scholar
  108. 108.
    Wiberg, N., Amelunxen, K., Nöth, H., Schmidt, M., Schwenk, H.: Tetrasupersilyldiindium(In-In) and tetrasupersilyldithallium(Tl-Tl): (tBu3Si)2M-M(SitBu3)2 (M = In,Tl). Angew. Chem. Int. Ed. Engl. 35, 65–67 (1996)CrossRefGoogle Scholar
  109. 109.
    Wiberg, N., Blank, T., Amelunxen, K., et al.: Ditrielanes (R3Si)2E – E(SiR3)2 and heterocubanes (R3Si)4E4Y4 (R = tBu, Ph; E = Al, Ga, In, Tl; Y = O,S,Se). Eur. J. Inorg. Chem. 34, 341–350 (2002)CrossRefGoogle Scholar
  110. 110.
    Schumann, H., Janiak, C., Pickard, J., Börner, U.: Pentabenzylcyclopentadienylthallium(I): Synthesis and structure of a dimeric organothallium compound with Tl-Tl interactions. Angew. Chem. Int. Ed. Engl. 26, 789–790 (1987)CrossRefGoogle Scholar
  111. 111.
    Schumann, H., Janiak, C., Khani, H.: Cyclopentadienylthallium(I) compounds with bulky cyclopentadienyl ligands. J. Organomet. Chem.. 330, 347–355 (1987)CrossRefGoogle Scholar
  112. 112.
    Janiak, C., Hoffmann, R.: TlI – TlI interactions in the molecular state—an MO analysis. Angew. Chem. Int. Ed. Engl. 28, 1688–1690 (1989)CrossRefGoogle Scholar
  113. 113.
    Janiak, C., Hoffmann, R.: TlI – TlI and InI-InI interactions: From the molecular to the solid state. J. Am. Chem. Soc. 112, 5924–5946 (1990)CrossRefGoogle Scholar
  114. 114.
    Schwerdtfeger, P.: Metal-metal bonds in Tl(I)-Tl(I) compounds: Fact or fiction? Inorg. Chem. 30, 1660–1663 (1991)CrossRefGoogle Scholar
  115. 115.
    Wiberg, N., Blank, T., Lerner, H.W., et al.: R4 Tl3Cl and \({\mathrm{R}}_{6}^{{_\ast}}{\mathrm{Tl}}_{6}{\mathrm{Cl}}_{2}(\mathrm{R} ={ \mbox{ t-Bu}}_{3}\mathrm{Si})\)— the first compounds with larger clusters containing covalently linked thallium atoms. Angew. Chem. Int. Ed. Engl. 40, 1232–1235 (2001)CrossRefGoogle Scholar
  116. 116.
    Fernández, E.J., Laguna, A., López-de-Luzuriaga, J.M., et al.: Theoretical study of the aggregation of d10s2 Au(I)-Tl(I) complexes in extended un-supported chains. J. Mol. Struct. Theor. Chem. 851, 121–126 (2008)CrossRefGoogle Scholar
  117. 117.
    Liu, F.L., Zhao, Y.F., Li, X.Y., Hao, F.Y.: Ab Initio study of the struc-ture and stability of MnTln (M = Cu,Ag,Au; n = 1, 2) clusters. J. Mol. Struct. Theor. Chem. 809, 189–194 (2007)CrossRefGoogle Scholar
  118. 118.
    Karanović, L., Poleti, D., Balić-Žuni, T., et al.: Two new examples of very short thallium-transition metal contacts: Tl3Ag3Sb2S6 and Tl3Ag3A 2S6. J. Alloy. Compd. 457, 66–74 (2008)CrossRefGoogle Scholar
  119. 119.
    Kaupp, M., Schleyer, P.v.R.: Ab Initio study of structures and stabilities of substituted lead compounds. Why is inorganic lead chemistry dominated by PbII but organolead chemistry by PbIV? J. Am. Chem. Soc. 115, 1061–1073 (1993)CrossRefGoogle Scholar
  120. 120.
    Edwards, P.A., Corbett, J.D.: Stable homopolyatomic anions. Synthesis and crystal structures of salts containing the pentaplumbide(2-) and pentastannide(2-) anions. Inorg. Chem. 16, 903–907 (1977)CrossRefGoogle Scholar
  121. 121.
    Molina, L.M., López, M.J., Rubio, L.C., et al.: Pure and mixed Pb clusters of interest for liquid ionic alloys. In: J.R. Sabin, M.C. Zerner, E. Brändas, J.M. Seminario (eds.) Advances in Quantum Chemistry, vol. 33, pp. 329–348. Academic, San Diego, CA (1999)Google Scholar
  122. 122.
    Molina, L.M., Alonso, J.A., Stott, M.J.: Octet composition in alkali-Pb solid alloys. Phys. Rev. B 66, 165427–1–165427–8 (2002)CrossRefGoogle Scholar
  123. 123.
    Liu, S., Corbett, J.D.: Synthesis, structure and properties of four ternary compounds: CaSrTt,Tt =. Si,Ge,Sn,Pb. J. Solid. State. Chem. 179, 830–835 (2006)CrossRefGoogle Scholar
  124. 124.
    Schwerdtfeger, P., Silberfach, H., Miehlich, B.: Relativistic effects in molecules: Pseudopotential calculations for PbH+, PbH, PbH2, and PbH4. J. Chem. Phys. 90; 762–767 (1989)CrossRefGoogle Scholar
  125. 125.
    Wang, X., Andrews, L.: Infrared spectra of group 14 hydrides in solid hydrogen: Experimental observation of PbH4, Pb2H2 and Pb2H4. J. Am. Chem. Soc. 125, 6581–6587 (2003)CrossRefGoogle Scholar
  126. 126.
    Malli, G.L., Siegert, M., Turner, D.P.: Relativistic and electron cor-relation effects for molecules of heavy elements: Ab Initio relativistic coupled-cluster calculations for PbH4. Int. J. Quantum Chem. 99, 940–949 (2004)CrossRefGoogle Scholar
  127. 127.
    Wang, S.G., Schwartz, W.H.E.: Relativistic effects of p-Block molecules. J. Mol. Struct. (Theor Chem). 338, 347–362 (1995)CrossRefGoogle Scholar
  128. 128.
    Dos Santos, E.J., Herrmann, A.B., Frescura, V.L.A., et al.: Determination of lead in sediments and sewage sludge by on-line hydride generation axial-view inductively-coupled plasma optical-emission spectrometry using slurry sampling. Anal. Bioanal. Chem. 388, 863–868 (2007)CrossRefGoogle Scholar
  129. 129.
    Escalante, S., Vargas, R., Vela, A.: Structure and energetics of group 14 (IV-A) halides: A comparative density functional-pseudopotential study. J. Phys. Chem. A 103, 5590–5601 (1999)CrossRefGoogle Scholar
  130. 130.
    Seth, M., Faegri, K., Schwerdtfeger, P.: The stability of the oxidation state + 4 in group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. Engl. 37, 2493–2495 (1998)CrossRefGoogle Scholar
  131. 131.
    Giju, K.T., De Proft, F., Geerlings, P.: Comprehensive study of density functional theory based properties for group 14 atoms and functional groups –XY3 (X = C, Si, Ge, Sn, Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At). J. Phys. Chem. A 109, 2925–2936 (2005)CrossRefGoogle Scholar
  132. 132.
    Salyulev, A.B., Vovkotrub, E.G., Strekalovskii, V.N.: The interaction of divalent lead compounds with chlorine. Russ. J. Inorg. Chem. 37, 109–110 (1992)Google Scholar
  133. 133.
    El-Issa, B.D., Pyykkö, P., Zanati, H.M.: MS Xα studies on the colors of BiPh5, PbCl6 2 −, and WS4 2 −: Are relativistic effects on the LUMO important? Inorg. Chem. 30, 2781–2787 (1991)CrossRefGoogle Scholar
  134. 134.
    Basinski, A., Lenarcik, B.: Investigation of the PbBr2 – Br2 – Br - H2O system. I. Solubility method. Rocz. Chem. 38, 1035–1044; Chem. Abstr. 62, 15487 (1964)Google Scholar
  135. 135.
    Lenarcik, B., Basinski, A.: Investigation of the PbBr2-Br2- Br - H2O system. III. Equilibria of complex formation between Pb\({}^{++}\) and Br, Br2 and Br, and among \({\mathrm{Pb}}^{++}\), Br and Br2. Rocz. Chem. 40, 165–176; Chem. Abstr. 65, 1460 (1965)Google Scholar
  136. 136.
    Stoltzfus, M.W., Woodward, P.M., Seshadri, R. et al.: Structure and bonding in SnWO4, PbWO4 and BiVO4: Lone pairs vs inert pairs. Inorg. Chem. 46, 3839–3850 (2007)CrossRefGoogle Scholar
  137. 137.
    Schwerdtfeger, P.: On the anomaly of the metal-carbon bond strength in (CH3)2M compounds of the heavy elements \(\mathrm{M} ={ \mathrm{Au}}^{-}\), Hg, Tl+, Pb2 +. Relativistic effects in metal-ligand force constants. J. Am. Chem. Soc. 112, 2818–2820 (1990)Google Scholar
  138. 138.
    (a) The Dictionary of Organometallic Compounds, 2nd edn, vol. 3, pp. 2851–2880. Chapman & Hall, London; (b) vol. 1, pp. 721–747 (1995)Google Scholar
  139. 139.
    Kano, N., Tokitoh, N., Okazaki, R.: Synthesis and X-ray crystal structure of Bis{2,4,6-tris[bis(trimethylsilyl)methyl]phenyl}dibromoplumbane. Organometallics 16, 2748–2750 (1997)CrossRefGoogle Scholar
  140. 140.
    Mallela, S.P., Myrczek, J., Bernal, I., Geanangel, R.A.: Crystal and molecular structure of pentaphenyl[tris(trimethylsilyl)methyl]diplumbane. J. Chem. Soc. Dalton. Trans. 2891–2894 (1993)Google Scholar
  141. 141.
    Stabenow, F., Saak, W., Marsmann, H., Weidenbruch, M.: Hexa-arylcyclotriplumbane: A molecule with a homonuclear ring system of lead. J. Am. Chem. Soc. 125, 10172–10173 (2003)CrossRefGoogle Scholar
  142. 142.
    Koch, R., Bruhn, T., Weidenbruch, M.: Theoretical group 14 chemistry. 4. Cyclotriplumbanes: Relativistic and substituent effects. J. Chem. Theor. Comput. 1, 1298–1303 (2005)CrossRefGoogle Scholar
  143. 143.
    Klinkhammer, K.W., Xiong, Y., Yao, S.: Molecular lead clusters-from unexpected discovery to rational synthesis. Angew. Chem. Int. Ed. Engl. 43, 6202–6204 (2004)CrossRefGoogle Scholar
  144. 144.
    Liu, H., Xing, X., Sun, S., et al.: Pbm-Phenyl (m = 1–5) complexes: An anion photoelectron spectroscopy and density functional study. J. Phys. Chem. A 110, 8688–8694 (2006)CrossRefGoogle Scholar
  145. 145.
    Tokitoh, N., Okazaki, R.: Recent topics in the chemistry of heavier congenors of carbenes. Coord. Chem. Rev. 210, 251–277 (2000)CrossRefGoogle Scholar
  146. 146.
    Spikes, G.H., Peng, Y., Fettinger, J.C., Power, P.P.: Synthesis and characterization of the monomeric sterically encumbered diaryls \(\mathrm{E}\left\{{\mathrm{C}}_{6}{\mathrm{H}}_{3}\_2, 6\mbox{ -}{({\mathrm{C}}_{6}{\mathrm{H}}_{3}{\_}2, 6\mbox{-}{\mathrm{Pr}}_{2}^{i})}_{2}\right\}_{2}\) (E = Ge, Sn, Pb). Z. Anorg. Allg. Chem. 632, 1005–1010 (2006)CrossRefGoogle Scholar
  147. 147.
    Jutzi, P., Burford, N.: Structurally diverse π-Cyclopentadienyl complexes of the main group elements. Chem. Rev. 99, 969–990 (1999)CrossRefGoogle Scholar
  148. 148.
    Watt, G.W., Moore, T.E.: Some reactions of trsodium monobismuthide in liquid ammonia. J. Am. Chem. Soc. 70, 1197–1200 (1948)CrossRefGoogle Scholar
  149. 149.
    Derrien, G., Tillard-Charbonnel, M., Manteghetti, A., et al.: Synthesis and crystal structure of M11X10 compounds, M = Sr, Ba and X = Sb, Bi. Electronic requirements and chemical bonding. J. Solid State Chem. 164, 169–175 (2002)Google Scholar
  150. 150.
    Eliav, E., Kaldor, U., Ishikawa, Y.: The relativistic coupled-cluster method: Transition energies of bismuth and Eka-Bismuth. Mol. Phys. 94, 181–187 (1998)CrossRefGoogle Scholar
  151. 151.
    Ruck, M.: From the metal to the molecule – ternary bismuth subhalides. Angew. Chem. Int. Ed. Engl. 40, 1182–1193 (2001)CrossRefGoogle Scholar
  152. 152.
    Bjerrum, N.J., Boston, C.R., Smith, G.P.: Lower oxidation states of bismuth. Bi+ and Bi5 3 + in molten salt solutions. Inorg. Chem. 6, 1162–1172 (1967)CrossRefGoogle Scholar
  153. 153.
    Kuznetsov, A.N., Popovkin, B.A., Henderson, W., et al.: Monocations of bismuth and indium in arene media: A spectroscopic and EXAFS investigation. J. Chem. Soc. Dalton. Trans. 1777–1781 (2000)Google Scholar
  154. 154.
    Friedman, R.M., Corbett, J.D.: Synthesis and structural characterization of bismuth(1 + ) nonabismuth(5 + ) hexachlorohafnate(IV), \({\mathrm{Bi}}^{+}\ {\mathrm{Bi}}_{9}^{5+}{({\mathrm{HfCl}{}_{6}}^{2-})}_{3}\). Inorg. Chem. 12, 1134–1139 (1973)CrossRefGoogle Scholar
  155. 155.
    Norman, N.C. (ed.).: Chemistry of Arsenic, Antimony and Bismuth, pp. 86–87. Blackie Academic & Professional, London (1998)Google Scholar
  156. 156.
    Huttner, G., Weber, U., Zsolnai, L.: B12, das Bismuth-Homolog des Stickstoffs, als Komplexligand in Bi2[W(CO)5]. Z. Naturforsch. B 37, 707–710 (1982)Google Scholar
  157. 157.
    Esterhuysen, C., Frenking, G.: Comparison of side-on and end-on coordination of E2 ligands in complexes [W(CO)5E2] (E = N, P, As, Sb, Bi, Si, Ge, Sn, Pb). Chem. Eur. J. 9, 3518–3529 (2003)CrossRefGoogle Scholar
  158. 158.
    Drake, G.W., Dixon, D.A., Sheehy, J.A., et al.: Seven-coordinated pnicogens. Synthesis and characterization of the SbF7 2 − and BiF7 2 − dianions and a theoretical study of the AsF7 2 − dianion. J. Am. Chem. Soc. 120, 8392–8400 (1998)CrossRefGoogle Scholar
  159. 159.
    Breidung, J., Thiel, W.: A systematic Ab Initio study of the group V trihalides MX3 and pentahalides MX5 (M = P-Bi, X = F-I). J. Comput. Chem. 13, 165–176 (1991)CrossRefGoogle Scholar
  160. 160.
    Kuznetsov, A.N., Kloo, L., Lindsjö, M., et al.: Ab Initio calculations on bismuth cluster polycations. Chem. J. Eur. 7, 2821–2828 (2001)CrossRefGoogle Scholar
  161. 161.
    Krossing, I.: Homoatomic cages and clusters of the heavier group 15 elements: Neutral species and cations. In: M. Driess, H. Nöth (eds.) Molecular Clusters of the Main Group Elements, pp. 209–229. Wiley, Weinheim, Germany (2004)Google Scholar
  162. 162.
    Smith, G.P., Davis, H.L.: Relationships between the chemistry and spectroscopy of bismuth and that anticipated for element 115. Inorg. Nucl. Chem. Lett. 9, 991–996 (1973)CrossRefGoogle Scholar
  163. 163.
    Yuan, H.K., Chen, H., Kuang, A.L., et al.: Density-functional study of small neutral and cationic bismuth clusters. J. Chem. Phys. 128, 094305/1–10 (2008)Google Scholar
  164. 164.
    Lein, M., Frunzke, J., Frenking, G.: A novel class of aromatic compounds: Metal-centered planar cations [Fe(Sb5)]+ and [Fe(Bi5)]+. Angew. Chem. Int. Ed. Engl. 42, 1303–1306 (2002)CrossRefGoogle Scholar
  165. 165.
    Beck, J., Dolg, M., Schlüter, S.: Bi4Te4 4 +– A cube-shaped polycationic main group element cluster. Angew. Chem. Int. Ed. Engl. 40, 2287–2289 (2001)CrossRefGoogle Scholar
  166. 166.
    Ferhat, M., Zaoui, A.: Structural and electrical properties of III-V bismuth compounds. Phys. Rev. B 73, 5107/1–7 (2006)CrossRefGoogle Scholar
  167. 167.
    Saidi-Houat, N., Zaoui, A., Ferhat, M.: Structural stability of thallium-V compounds. J. Phys.: Condens. Matter. 19, 106221/1–18 (2007)CrossRefGoogle Scholar
  168. 168.
    Duncan, J.F., Thomas, F.G.: β-decay of radioactive lead tetramethyl. J. Inorg. Nucl. Chem. 29, 869–890 (1967)CrossRefGoogle Scholar
  169. 169.
    Neumüller, B., Dehnicke, K.: Blue-violet pentamethylbismuth. Angew. Chem. Int. Ed. Engl. 33, 1726–1727 (1994)CrossRefGoogle Scholar
  170. 170.
    Seppelt, K.: Structure, color and chemistry of pentaarylbismuth compounds. In: F.G.A. Stone, R. West (eds.) Advances in Organometallic Chemistry, vol. 34, pp. 207–217. Academic Press, San Diego, CA (1992)Google Scholar
  171. 171.
    Wallenhauser, S., Leopold, D., Seppelt, K.: Hexacoordinate organobismuth compounds. Inorg. Chem. 32, 3948–3951 (1993)CrossRefGoogle Scholar
  172. 172.
    Ashe, A.J.: Thermochromic distibines and dibismuthines. In: F.G.A. Stone, R. West (eds.) Advances in Organometallic Chemistry, vol. 30, pp. 77–97. Academic, San Diego, CA (1990)Google Scholar
  173. 173.
    Bagnall, K.W.: Chemistry of the Rare Radioelements, pp. 3–94. Butterworths, London (1957)Google Scholar
  174. 174.
    Zingaro, R.A.: (a) Polonium: Inorganic chemistry, pp. 3338–3341; (b) Polonium: Organometallic chemistry, pp. 3341–3343. In: R.B. King (ed.) Encyclopedia of Inorganic Chemistry, vol. 6. Wiley, Chichester, UK (1994)Google Scholar
  175. 175.
    Legut, D., Friák, M., Šob, M.: Why is polonium simple cubic and so highly anisotropic? Phys. Rev. Lett. 99, 016402/1–4 (2007)CrossRefGoogle Scholar
  176. 176.
    Weinstock, B., Chernick, C.L.: The preparation of a volatile polonium fluoride. J. Am. Chem. Soc. 82, 4116–4117 (1960)CrossRefGoogle Scholar
  177. 177.
    Onoe, J.: Relativistic effects on covalent bonding: Role of individual valence atomic orbitals. J. Phys. Soc. Japan 66, 2328–2336 (1997)CrossRefGoogle Scholar
  178. 178.
    Abakumov, A.S., Malyshev, M.L.: Dissociation of polonium iodides and vapor pressure in the polonium-iodine system. Radiokhimiya 18, 894–901 (1976); Chem. Abstr. 86, 60689s (1977)Google Scholar
  179. 179.
    Abakumov, A.S., Malyshev, M.L.: Possibility of the pyrochemical removal of radiogenic lead from polonium by the use of volatile polonium iodides. Radiokhimiya (5), 776–778; Chem. Abstr. 94, 94988u (1980)Google Scholar
  180. 180.
    Bilewicz, A.: Adsorption of Zr4 +, Hf4 +, Rf4 + and Po4 + diketonate complexes on hydrophobized glass surface. J. Radioanal. Nucl. Chem. 247, 407–410 (2001)CrossRefGoogle Scholar
  181. 181.
    Suganuma, H.: Anion exchange of the chemical species of tracer concentrations of polonium(IV) in chloride solutions. J. Radioanal. Nucl. Chem. 191, 265–272 (1995)CrossRefGoogle Scholar
  182. 182.
    Ayala, R., Martinez, J.M., Pappalardo, R.R., et al.: Po(IV) hydration: A quantum chemical study. J. Phys. Chem. B 112, 5416–5422 (2008)CrossRefGoogle Scholar
  183. 183.
    Zikovsky, L.: Precipitation and solubility of some polonium compounds. J. Radioanal. Nucl. Chem. 227, 171–172 (1998)CrossRefGoogle Scholar
  184. 184.
    Chu, K.D., Hopke, P.K.: Neutralization kinetics for polonium-218. Environ. Sci. Technol. 22, 711–717 (1988)CrossRefGoogle Scholar
  185. 185.
    Eichler, B.: Volatility of polonium PSI-Bericht (02-12) a 1-52. Chem. Abstr. 137, 146192h (2002)Google Scholar
  186. 186.
    Dubillard, S., Rota, J.B., Saue, T., Faegri, K.: Bonding and analysis using localized relativistic orbitals: Water, the ultrarelativistic case and the heavy homologues H2X (X = Te, Po, eka-Po). J. Chem. Phys. 124, 154307/1–14 (2006)CrossRefGoogle Scholar
  187. 187.
    Sumathi, K., Balasubramanian, K.: Electronic states and potential energy surfaces of H2Te, H2Po and their positive ions. J. Chem. Phys. 92, 6604–6619 (1990)CrossRefGoogle Scholar
  188. 188.
    Petryanov, I.V., Borisov, N.B., Churkin, S.L., et al.: Generation and isolation of a gaseous fraction of polonium from its solid preparations. Dokl. Akad. Nauk. SSSR 322, 557–559; Chem. Abstr. 116, 160875f (1992)Google Scholar
  189. 189.
    Buongiorno, J., Larson, C., Czerwinski, K.R.: Speciation of polonium released from molten lead-bismuth. Radiochim. Acta. 91, 153–158 (2003)CrossRefGoogle Scholar
  190. 190.
    Witteman, W.G., Giorgi, A.L., Vier, D.T.: The preparation and identification of some intermetallic compounds of polonium. J. Am. Chem. Soc. 64, 434–440 (1960)Google Scholar
  191. 191.
    Miura, T., Obara, T., Sekimoto, H.: Experimental verification of thermal decomposition of lead polonide. Ann. Nucl. Energy 34, 926–930 (2007)CrossRefGoogle Scholar
  192. 192.
    Rabii, S., Lasseter, R.H.: Band structure of PbPo and trends in the Pb chalcogenides. Phys. Rev. Lett. 33, 703–705 (1974)CrossRefGoogle Scholar
  193. 193.
    Boukra, A., Zaoui, A., Ferhat, M.: Ground state structures in the polonium-based II-VI compounds. Solid State Commun.. 141, 523–528 (2007)CrossRefGoogle Scholar
  194. 194.
    Wiles, D.R.: The radiochemistry of organometallic compounds. In: F.G.A. Stone, R. West (eds.) Advances in Organometallic Chemistry, vol. 11, pp. 207–252. Academic, New York (1973)Google Scholar
  195. 195.
    Ohtsuki, T., Ohno, K.: Formation of Po@C60. Phys. Rev. B 72, 153411/1–3 (2005)CrossRefGoogle Scholar
  196. 196.
    Chi, M., Han, P., Fang, X., et al.: Density functional theory of polonium-doped endohedral fullerenes Po@C60. J. Mol. Struct. Theor. Chem. 807, 121–124 (2007)CrossRefGoogle Scholar
  197. 197.
    Thayer, J.S.: Biological methylation of less-studied elements. Appl. Organomet. Chem. 16; 677–691 (2002)CrossRefGoogle Scholar
  198. 198.
    Momoshima, N., Fukuda, A., Ishida, A., Yoshinaga, C.: Impact of microorganisms on polonium volatilization. J. Radioanal. Nucl. Chem. 272, 413–417 (2007)CrossRefGoogle Scholar
  199. 199.
    Aten, A.H.W.: The chemistry of astatine. In: H.J. Emeleus, A.G. Sharpe (eds.) Advances in Inorganic Chemistry, vol. 6, pp. 207–223. Academic, San Diego, CA (1964)Google Scholar
  200. 200.
    Brown, I.: Astatine: Its organonuclear chemistry and biomedical application. In: H.J. Emeleus, A.G. Sharpe (eds.) Advances in Inorganic Chemistry, vol. 31, pp. 43–88. Academic, San Diego, CA (1987)Google Scholar
  201. 201.
    Blower, P.J.: Inorganic pharmaceuticals: Astatine. Annu. Rep. Prog. Chem. Sect. A 96, 655 (2000)CrossRefGoogle Scholar
  202. 202.
    Schwerdtfeger, P.: Second-order Jahn-Teller distortions in group 17 fluorides EF3 (E = Cl, Br, I, At). Large relativistic bond angle changes in AtF3. J. Phys. Chem. 100, 2968–2973 (1996)CrossRefGoogle Scholar
  203. 203.
    Bae, C., Han, Y.K., Lee, Y.S.: Spin-orbit and relativistic effects on structures and stabilities of group 17 fluorides EF3 (E = I, At and Element 117): Relativity induced stability for the D 3h structure of (117)F3. J. Phys. Chem. A 107, 852–858 (2003)CrossRefGoogle Scholar
  204. 204.
    Pyykkö, P., Lohr, L.L.: Relativistically parameterized exrended Hückel calculations. 3. Structure and bonding for some compounds of uranium and other heavy elements. Inorg. Chem. 20, 1950–1959 (1981)CrossRefGoogle Scholar
  205. 205.
    Pruszyński, M., Bilewicz, A., Was, B., Petelenz, B.: Formation and stability of astatide-mercury complexes. J. Radioanal. Nucl. Chem. 268, 91–94 (2006)CrossRefGoogle Scholar
  206. 206.
    Pruszyński, M., Bilewicz, A., Zalutsky, M.R.: Preparation of Rh[16aneS4-diol]211At and Ir[16aneS4-diol]211At complexes as potential precursors for astatine radiopharmaceuticals. Part 1: Synthesis. Bioconjug. Chem. 19, 958–965 (2008)CrossRefGoogle Scholar
  207. 207.
    Roy, K., Lahiri, S.: Production and separation of astatine radionuclides: Some new addition to astatine chemistry. Appl. Radiat. Isot. 66, 571–576 (2008)CrossRefGoogle Scholar
  208. 208.
    Baran, E.J.: Vibrational properties for hydrogen astatide, HAt. Z. Naturforsch. A 59, 133–135 (2004)Google Scholar
  209. 209.
    Saue, T., Faegri, K., Gropen, O.: Relativistic effects on the bonding of heavy and superheavy hydrogen halides. Chem. Phys. Lett. 263, 360–366 (1996)CrossRefGoogle Scholar
  210. 210.
    Stewart, M., Rösler Bickelhaupt, F.M.: Proton affinities in water of maingroup-element hydrides—effects of hydration and methyl substitution. Eur. J. Inorg. Chem. 3646–3654 (2007)Google Scholar
  211. 211.
    Dolg, M., Küchle, W., Stoll, H., et al.: Ab Initio pseudopotentials for Hg to Rn II. Molecular calculations on the hydrides of Hg to At and the fluorides of Rn. Mol. Phys. 74, 1265–1285 (1991)Google Scholar
  212. 212.
    Vasilescu, I.J.: On the existence, structure and properties of radon compounds. Rev. Roum. Chim. 12, 835–838 (1967)Google Scholar
  213. 213.
    Holloway, J.H., Hope, E.G.: Recent advances in noble-gas chemistry. In: A.G. Sykes (ed.) Advances in Inorganic Chemistry, vol. 46, pp. 51–100. Academic, San Diego, CA (1999)Google Scholar
  214. 214.
    Malli, G.L.: Relativistic all-electron Dirac-Fock calculations on RnF6 and its ions. J. Mol. Struct (Theor Chem). 537, 71–77 (2001)CrossRefGoogle Scholar
  215. 215.
    Filatov, M., Cremer, D.: Bonding in radon hexafluoride: An unusual relativistic problem? Phys. Chem. Chem. Phys. 5, 1103–1105 (2003)CrossRefGoogle Scholar
  216. 216.
    Kaupp, M., van Wüllen, Ch., Franke, R., et al.: The structure of XeF6 and compounds isoelectronic with it. A challenge to computational chemistry and to the qualitative theory of the chemical bond. J. Am. Chem. Soc. 118, 11939–11950 (1996)Google Scholar
  217. 217.
    Stein, L., Hohorst, F.A.: Collection of radon with solid oxidizing reagents. Environ. Sci. Technol. 16, 419–422 (1982)CrossRefGoogle Scholar
  218. 218.
    Stein, L.: New evidence that radon is a metalloid element: Ion-exchange reactions of cationic radon. J. Chem. Soc., Chem. Commun. 1631–1632 (1985)Google Scholar
  219. 219.
    Buchachenko, A.A., Klos, J., Szczesniak, M.M., et al.: Interaction potentials for B-Rg (Rg = He-Rn): Spectroscopy and transport coefficients. J. Chem. Phys. 125, 064305/1–12 (2006)CrossRefGoogle Scholar
  220. 220.
    Malli, G.L.: Prediction of the existence of radon carbonyl: RnCO. Int. J. Quantum Chem. 90, 611–615.Google Scholar
  221. 221.
    Li, K., Xue, D.: Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110, 11332–11337 (2006)CrossRefGoogle Scholar
  222. 222.
    Eliav, E., Vilkas, M.J., Ishikawa, Y., Kaldor, U.: Ionization potentials of alkali atoms: Towards meV accuracy. Chem. Phys. 311, 163–168 (2005)CrossRefGoogle Scholar
  223. 223.
    Landau, A., Eliav, E., Ishikawa, Y., Kaldor, U.: Benchmark calculations of electron affinities of the alkali atoms sodium to eka-Francium. J. Chem. Phys. 115, 2389–2392 (2001)CrossRefGoogle Scholar
  224. 224.
    Lupinetti, C., Thakkar, A.J.: Polarizabilities of the alkali anions Li to Fr. J. Chem. Phys. 125, 194317/1–7 (2006)CrossRefGoogle Scholar
  225. 225.
    Aymar, M., Dulieu, O., Spiegelman, F.: Electronic properties of francium diatomic compounds and prospects for cold molecule formation. J. Phys. B: At. Mol. Opt. 39, S905-S927 (2006)CrossRefGoogle Scholar
  226. 226.
    Lee, E.P.F., Wright, T.G.: Ground electronic states of RbO2 +, CsO2 + and FrO2: The ionization energies of RbO2 and CsO2. J. Phys. Chem. A 109, 3257–3261 (2005)CrossRefGoogle Scholar
  227. 227.
    Hickling, H.L., Viehland, L.A., Shepherd, D.T., et al.: Spectroscopy of M+ ∙ Rg and transport coefficients of M+ in Rg (M = Rb-Fr; Rg = He-Rn). Phys. Chem. Chem. Phys. 6, 4233–4239 (2004)CrossRefGoogle Scholar
  228. 228.
    Zielińska, B., Bilewicz, A.: Influence of relativistic effects on hydrolysis of Ra2 +. J. Radioanal. Nucl. Chem. 266, 339–341 (2005)CrossRefGoogle Scholar
  229. 229.
    Lee, E.P.F., Soldán, P., Wright, T.G.: The heaviest group 2 difluoride, RaF2: Geometry and ionization energy. Inorg. Chem. 40, 5979–5984 (2001)CrossRefGoogle Scholar
  230. 230.
    Lee, E.P.F., Wright, T.G.: The heaviest group 2 dihalide: RaAt2. Chem. Phys. Lett. 374, 176–182 (2003)CrossRefGoogle Scholar
  231. 231.
    Gumiński, C.: The Hg-Ra (Mercury-Radium) system. J. Phase. Equil. Diff. 26, 80 (2005)Google Scholar
  232. 232.
    Schädel, M. (ed.).: The Chemistry of the Superheavy Elements. Kluwer, Dordrecht (2003)Google Scholar
  233. 233.
    Pershina, V.: The chemistry of the superheavy elements and relativistic effects. In: P. Schwerdtfeger (ed.) Relativistic Electronic Structure, vol. 2, pp. 1–80. Elsevier, Amsterdam (2004)Google Scholar
  234. 234.
    Kemsley, J.: Extreme elements. Chem. Eng. News. (June ), 42–43 (2008)Google Scholar
  235. 235.
    Bonchev, D., Kamenska, V.: Predicting the properties of the 113–120 transactinide elements. J. Phys. Chem. 85, 1177–1186 (1981)CrossRefGoogle Scholar
  236. 236.
    Han, Y.K., Bae, C., Son, S.K., Lee, Y.S.: Spin-orbit effects on the transactinide p-Block element monohydrides MH (M = Element 113–118). J. Chem. Phys. 112, 2684–2691 (2000)CrossRefGoogle Scholar
  237. 237.
    David, J., Fuentealba, P., Restreppo, A.: Relativistic effects on the hexafluorides of group 10 metals. Chem. Phys. Lett. 457, 42–44 (2008)CrossRefGoogle Scholar
  238. 238.
    Patzschke, M., Pyykkö, P.: Darmstadtium carbonyl and carbide resemble platinum carbonyl and carbide. Chem. Commun. 1982–1983 (2004)Google Scholar
  239. 239.
    De Macedo, L.G.M., Sambrano, J.R., De Souza, A.R., Borin, A.C.: All electron fully relativistic Dirac-Fock calculation for darmstadtium carbide using prolapse free basis set. Chem. Phys. Lett. 440, 367–371 (2007)CrossRefGoogle Scholar
  240. 240.
    Ionova, G.V., Ionova, I.S., Mikhalko, V.K., et al.: Halides of tetravalent transactinides (Rg,Db,Sg,Bh,Hs,Mt, 110th Element): Physicochemical properties. Russ. J. Coord. Chem. 30, 352–359 (2004)CrossRefGoogle Scholar
  241. 241.
    Eliav, E., Kaldor, U., Schwerdtfeger, P., et al.: Ground state electron configuration of element 111. Phys. Rev. Lett. 73, 3203–3206 (1994)CrossRefGoogle Scholar
  242. 242.
    Hancock, R.D., Bartolotti, L.J., Kaltsoyannia, H.: Density functional theory-based prediction of some aqueous-phase chemistry of superheavy element 111. Roentgenium(I) is the “Softest” metal ion. Inorg. Chem. 45, 10780–10785 (2006)CrossRefGoogle Scholar
  243. 243.
    Seth, M., Schwerdtfeger, P., Dolg, M., et al.: Large relativistic effects in molecular properties of the hydride of superheavy element 111. Chem. Phys. Lett. 250, 461–465 (1996)CrossRefGoogle Scholar
  244. 244.
    Gaston, N., Opahle, I., Gäggeler, H.W., Schwerdtfeger, P.: Is Eka-Mercury (Element 112) a group 12 metal? Angew. Chem. Int. Ed. Engl. 46, 1663–1666 (2007)CrossRefGoogle Scholar
  245. 245.
    Guang, L.J., Zhong, D.C., Jun, Y.Y., et al.: The atomic structure and the properties of ununbium(Z = 112) and mercury(Z = 80). Sci. China G 50, 707–715 (2007)CrossRefGoogle Scholar
  246. 246.
    Eichler, R., Aksenov, N.V., Belozerov, A.V., et al.: Confirmation of the decay of 283112 and first indication for Hg-like behavior of element 112. Nucl. Phys. A 787, 373c-380c (2007)CrossRefGoogle Scholar
  247. 247.
    Eichler, R., Aksenov, N.V., Belozerov, A.V., et al.: Chemical characterization of element 112. Nature 447, 72–75 (2007)CrossRefGoogle Scholar
  248. 248.
    Eichler, R., Aksenov, N.V., Belozerov, A.V., et al.: Thermochemical and physical properties of element 112. Angew. Chem. Int. Ed. Engl. 47, 3262–3266 (2008)CrossRefGoogle Scholar
  249. 249.
    Pershina, V., Bastug, T., Jacob, T., et al.: Intermetallic compounds of the heaviest elements: The electronic structure and bonding of dimers of element 112 and its homolog Hg. Chem. Phys. Lett. 365, 176–183 (2002)CrossRefGoogle Scholar
  250. 250.
    Bae, C., Choi, Y.J., Lee, Y.S.: Two-component spin-orbit calculations for the heterodiatomic molecules TlAt and (113)(117) with relativistic effective core potentials. Chem. Phys. Lett. 375, 65–71 (2003)CrossRefGoogle Scholar
  251. 251.
    Eliav, E., Kaldor, U., Ishikawa, Y., et al.: Calculated energy levels of thallium and eka-thallium(Element 113). Phys. Rev. A 53, 3926–3933 (1996)CrossRefGoogle Scholar
  252. 252.
    Yu, Y.J., Dong, C.Z., Li, J.G., Fricke, B.: The excitation energies, ionization potentials and oscillator strengths of neutral and ionized species of Uuq (Z = 114) and the homolog elements Ge,Sn and Pb. J. Chem. Phys. 128, 124316/1–7 (2008)Google Scholar
  253. 253.
    Seth, M., Faegri, K., Schwerdtfeger, P.: The stability of the oxidation state + 4 in group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. Engl. 37, 2493–2496 (1998)CrossRefGoogle Scholar
  254. 254.
    Guseva, L.I.: A study of ion-exchange behavior of Pb in dilute HBr solutions, aimed to evaluate the possibility of on-line isolation of element 114. 228Ra – 212Pb generator. Radiochemistry 49, 92–96 (2007)CrossRefGoogle Scholar
  255. 255.
    Guseva, L.I.: A comparative study of ion-exchange behavior of Hf and Pb as homologs of elements 104(Rf) and 114, respectively, in solutions of hydrohalic acids. Relativistic Effects Radiochem. 50, 186–190 (2008)Google Scholar
  256. 256.
    Pershina, V., Anton, J., Fricke, B.: Intermetallic compounds on the heaviest elements and their homologs: The electronic structure and bonding of MM’, where M = Ge,Sn,Pb, and element 114 and M’ = Ni,Pd,Pt,Cu,Ag,Au,Sn,Pb and element 114. J. Chem. Phys. 127, 134310/1–9 (2007)CrossRefGoogle Scholar
  257. 257.
    Pershina, V., Borschevsky, A., Eliav, E., Kaldor, U.: Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from Ab Initio Dirac-Coulomb atomic calculations. J. Chem. Phys. 128, 024707/1–9 (2008)CrossRefGoogle Scholar
  258. 258.
    Giju, K.T., De Proft, F., Geerlings, P.: Comprehensive study of density functional theory based properties for group 14 atoms and functional groups, -XY3 (X = C, Si, Ge, Sn. Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At). J. Phys. Chem. A 109, 2925–2936 (2005)CrossRefGoogle Scholar
  259. 259.
    Keller, O.L., Nestor, C.W., Fricke, B.: Predicted properties of the superheavy elements. III. Element 115, eka-bismuth. J. Phys. Chem. 78, 1945–1949 (1974)CrossRefGoogle Scholar
  260. 260.
    Van Wüllen, C., Langermann, N.: Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116. J. Chem. Phys. 126, 114106/1–9 (2007)Google Scholar
  261. 261.
    Nash, C.S., Crockett, W.W.: An anomalous bond angle in (116)H2. Theoretical evidence for supervalent hybridization. J. Phys. Chem. A 110, 4619–4621 (2006)Google Scholar
  262. 262.
    Takahashi, N.: Boiling points of the superheavy elements 117 and 118. J. Radioanal. Nucl. Chem. 251, 299–301 (2002)CrossRefGoogle Scholar
  263. 263.
    Faegri, K., Saue, T.: Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding. J. Chem. Phys. 115, 2456–2464 (2001)CrossRefGoogle Scholar
  264. 264.
    Nash, C.S., Bursten, B.E.: Spin-orbit effects on the electronic structure of heavy and superheavy hydrogen halides. J. Phys. Chem. A 103, 632–636 (1999)CrossRefGoogle Scholar
  265. 265.
    Mitin, A.V., van Wüllen, C.: Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using core potential and all-electron methods. J. Chem. Phys. 124, 064305/1–7 (2006)CrossRefGoogle Scholar
  266. 266.
    Eliav, E., Kaldor, U., Ishikawa, Y., Pyykkö, P.: Element 118: The first rare gas with an electron affinity. Phys. Rev. Lett. 77, 5350–5352 (1996)CrossRefGoogle Scholar
  267. 267.
    Nash, C.S., Bursten, B.E.: Spin-orbit effects, VSEPR theory and the electronic structures of heavy and superheavy group IVA hydrides and group VIIIA tetrafluorides. A partial role reversal for elements 114 and 118. J. Phys. Chem. A 103, 402–410 (1999)CrossRefGoogle Scholar
  268. 268.
    Han, Y.K., Lee, Y.S.: Structures of RgFn (Rg = Xe, Rn and Element 118. n = 2,4) calculated by two-component spin-orbit methods. A spin-orbit induced isomer of (118)F4. J. Phys. Chem. A 103, 1104–1108 (1999)CrossRefGoogle Scholar
  269. 269.
    Mişicu, Ş., Bürvenich, T., Cornelius, T., Greiner, W.: Collective ex-citations of the element Z = 120. Phys. Atom. Nucl. 66, 1552–1556 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CincinnatiCincinnatiUSA

Personalised recommendations