Quantum Mechanical Methods for Biomolecular Simulations

  • Kin-Yiu Wong
  • Lingchun Song
  • Wangshen Xie
  • Dan T. Major
  • Yen-Lin Lin
  • Alessandro Cembran
  • Jiali Gao
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 7)


We discuss quantum mechanical methods for the description of the potential energy surface and for the treatment of nuclear quantum effects in chemical and biological applications. Two novel electronic structure methods are described, including an electronic structure-based explicit polarization (X-Pol) force field and an effective Hamiltonian molecular orbital and valence bond (EH-MOVB) theory. In addition, we present two path integral techniques to treat nuclear quantum effects, which include an analytical pathintegral method based on Kleinert’s variational perturbation theory, and integrated pathintegral free-energy perturbation and umbrella sampling (PI-FEP/UM) simulation. Studies have shown that quantum mechanics can be applied to biocatalytic systems in a variety of ways and scales. We hope that the methods presented in this article can further expand the scope of quantum mechanical applications to biomolecular systems


Polarizable force field Molecular orbital and valence bond theory Nuclear quantum effects Path integral Kleinert’s variational perturbation theory Isotope effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG (2006) Mechanisms and free energies of enzymatic reactions. Chem Rev 106(8):3188–3209CrossRefGoogle Scholar
  2. 2.
    Pu J, Gao J, Truhlar DG (2006) Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem Rev 106(8):3140–3169CrossRefGoogle Scholar
  3. 3.
    Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) How enzymes work: Analysis by modern rate theory and computer simulations. Science (Washington, DC) 303(5655):186–195CrossRefGoogle Scholar
  4. 4.
    Gao J (1997) Toward a molecular orbital derived empirical potential for liquid simulations. J Phys Chem B 101(4):657–663CrossRefGoogle Scholar
  5. 5.
    Gao J (1998) A molecular-orbital derived polarization potential for liquid water. J Chem Phys 109(6):2346–2354CrossRefGoogle Scholar
  6. 6.
    Xie W, Gao J (2007) Design of a next generation force field: the X-POL potential. J Chem Theory Comput 3(6):1890–1900CrossRefGoogle Scholar
  7. 7.
    Xie W, Song L, Truhlar DG, Gao J (2008) The variational explicit polarization potential and analytical first derivative of energy: towards a next generation force field. J Chem Phys 128(23):234108CrossRefGoogle Scholar
  8. 8.
    Xie W, Song L, Truhlar DG, Gao J (2008) Incorporation of QM/MM buffer zone in the variational double self-consistent field method. J Phys Chem B 112(45):14124–14131CrossRefGoogle Scholar
  9. 9.
    Mo Y, Gao J (2000) Ab initio QM/MM simulations with a molecular orbital-valence bond (MOVB) method: application to an SN2 reaction in water. J Comput Chem 21(16):1458–1469CrossRefGoogle Scholar
  10. 10.
    Mo Y, Gao J, (2000) An ab initio molecular orbital-valence bond (MOVB) method for simulating chemical reactions in solution. J Phys Chem A 104(13):3012–3020CrossRefGoogle Scholar
  11. 11.
    Song L, Gao J (2008) On the construction of diabatic and adiabatic potential energy surfaces based on ab initio valence bond theory. J Phys Chem A ASAPGoogle Scholar
  12. 12.
    Wong K-Y, Gao J (2007) An automated integration-free path-integral method based on Kleinert’s variational perturbation theory. J Chem Phys 127(21): 211103CrossRefGoogle Scholar
  13. 13.
    Wong K-Y, Gao J (2008) Systematic approach for computing zero-point energy, quantum partition function, and tunneling effect based on Kleinert’s variational perturbation theory. J Chem Theory Comput 4(9):1409–1422CrossRefGoogle Scholar
  14. 14.
    Jang S, Voth GA (2001) A relationship between centroid dynamics and path integral quantum transition state theory. J Chem Phys 112(8747–8757): Erratum: 114, 1944CrossRefGoogle Scholar
  15. 15.
    Feynman RP, Hibbs AR (1965) Quantum Mechanics and Path Integrals. McGraw-Hill: New York, p xiv, 365 p. For the applications in quantum statistics, see chapters 10 and 11; Corrections to the errata in the book: and
  16. 16.
    Bixon M, Lifson S (1967) Potential functions and conformations in cycloalkanes. Tetrahedron 23(2):769–784CrossRefGoogle Scholar
  17. 17.
    Levitt M (2001) The birth of computational structural biology. Nat Struct Biol 8(5):392–393CrossRefGoogle Scholar
  18. 18.
    Kohen A, Limbach H-H (2006) Isotope Effects in Chemistry and Biology. Taylor & Francis: Boca Raton, p xiv, 1074 pGoogle Scholar
  19. 19.
    Major DT, Gao J (2007) An integrated path integral and free-energy perturbation-umbrella sampling method for computing kinetic isotope effects of chemical reactions in solution and in enzymes. J Chem Theory Comput 3:949–960CrossRefGoogle Scholar
  20. 20.
    Gao J, Wong K-Y, Major DT (2008) Combined QM/MM and path integral simulations of kinetic isotope effects in the proton transfer reaction between nitroethane and acetate ion in water. J Comput Chem 29:514–522CrossRefGoogle Scholar
  21. 21.
    Kleinert H (2004) Path integrals in quantum mechanics, statistics, polymer physics, and financial markets. 3rd edition.; World Scientific: Singapore; River Edge, NJ, p xxvi, 1468 p. For the quantum mechanical integral equation, see Section 1.9; For the variational perturbation theory, see Chapters 3 and 5Google Scholar
  22. 22.
    Sprik M, Klein ML, Chandler D (1985) Phys. ReV. B: Condens. Matter Mater. Phys. 31:4234–4244Google Scholar
  23. 23.
    Hwang J-K, Warshel A (1996) J Am Chem Soc 118:11745–11751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kin-Yiu Wong
    • 1
  • Lingchun Song
    • 1
  • Wangshen Xie
    • 1
  • Dan T. Major
    • 1
  • Yen-Lin Lin
    • 1
  • Alessandro Cembran
    • 1
  • Jiali Gao
    • 1
  1. 1.Department of Chemistry, Digital Technology Center, and Minnesota Supercomputing InstituteUniversity of MinnesotaUSA

Personalised recommendations