Advertisement

Series Analysis

  • Anthony J. Guttmann
  • Iwan Jensen
Part of the Lecture Notes in Physics book series (LNP, volume 775)

Keywords

Critical Exponent Triangular Lattice Indicial Equation Amplitude Estimate Regular Singular Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker G A Jr 1961 Application of the Padé approximant method to the investigation of some magnetic properties of the Ising model Phys Rev 124, 768–74CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Boukraa S, Guttmann A J, Hassani S, Jensen I, Nickel B, Maillard J M and Zenine N 2008 Experimental mathematics on the magnetic susceptibility of the square lattice Ising model J. Phys. A: Math. Theor. 41 455202CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Conway A R and Guttmann A J 1996 Square lattice self-avoiding walks and corrections to scaling Phys. Rev. Lett. 77 5284–5287CrossRefADSGoogle Scholar
  4. 4.
    Conway A R, Guttmann A J, and Delest M 1997 The number of three-choice polygons. Mathl. Comput. Modelling 26 51–58CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Fisher M E and Au-Yang H 1979 Inhomogeneous differential approximants for power series J. Phys. A: Gen. Phys. 12 1677–92.zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Forsyth A R 1902 Part III. Ordinary linear equations vol. IV of Theory of differential equations. (Cambridge: Cambridge University Press)zbMATHGoogle Scholar
  7. 7.
    Guttmann A J 1989 Asymptotic analysis of coefficients in Phase Transitions and Critical Phenomena Vol. 13 pp. 1–234, eds C Domb and J L Lebowitz (Academic: London)Google Scholar
  8. 8.
    Guttmann A J and Jensen I 2006 Fuchsian differential equation for the perimeter generating function of three-choice polygons S éminaire Lotharingien de Combinatoire 54 B54c.MathSciNetGoogle Scholar
  9. 9.
    Guttmann A J and Jensen I 2006 The perimeter generating function of punctured staircase polygons J. Phys. A: Math. Gen. 39, 3871–3882zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Guttmann A J, Jensen I, Wong L H and Enting I G 2000 Punctured polygons and polyominoes on the square lattice J. Phys. A: Math. Gen. 33 1735–1764zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Guttmann A J and Joyce GS 1972 On a new method of series analysis in lattice statistics J. Phys. A: Gen. Phys. 5 L81–L84CrossRefADSGoogle Scholar
  12. 12.
    Guttmann A J, Prellberg T and Owczarek A L 1993 On the symmetry classes of planar self-avoiding walks J. Phys. A: Math. Gen. 26 6615–6623zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Hunter D L and Baker G A Jr 1979 Methods of series analysis III. Integral approximant methods Phys Rev B 19, 3808–21.CrossRefADSGoogle Scholar
  14. 14.
    Ince E L 1927 Ordinary differential equations (London: Longmans, Green and Co. Ltd.)zbMATHGoogle Scholar
  15. 15.
    Jensen I 2003 A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice J. Phys. A: Math. Gen. 36 5731–5745CrossRefADSGoogle Scholar
  16. 16.
    Jensen I 2004 Self-avoiding walks and polygons on the triangular lattice J. Stat. Mech: Theor. Exp. P10008Google Scholar
  17. 17.
    Jensen I and Guttmann A J 1999 Self-avoiding polygons on the square lattice J. Phys. A: Math. Gen. 32 4867–4876zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    Manna S S 1984 Critical behaviour of anisotropic spiral self-avoiding walks J. Phys. A: Math. Gen. 17 L899–L903CrossRefADSGoogle Scholar
  19. 19.
    Nienhuis B G (1982) Exact critical point and exponents of the O(n) model in two dimensions. Phys Rev Lett 49, 1062–1065.CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Nienhuis B 1984 Critical behavior of two-dimensional spin models and charge asymmetry in the coulomb gas J. Stat. Phys. 34 731–761zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Saleur H 1987 Conformal invariance for polymers and percolation J. Phys. A: Math. Gen. 20, 455–470CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Zenine N, Boukraa S, Hassani S and Maillard J M 2004 The Fuchsian differential equation of the square lattice Ising model x (3) susceptibility J. Phys. A: Math. Gen. 37 9651–9668zbMATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    Zenine N, Boukraa S, Hassani S and Maillard J M 2005 Square lattice Ising model susceptibility: series expansion method and differential equation for x (3) J. Phys. A: Math. Gen. 38 1875–1899zbMATHCrossRefADSMathSciNetGoogle Scholar
  24. 24.
    Zenine N, Boukraa S, Hassani S and Maillard J M 2005 Ising model susceptibility: the Fuch-sian differential equation for x (4) and its factorization properties J. Phys. A: Math. Gen. 38 4149–4173zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Canopus Academic Publishing Limited 2009

Authors and Affiliations

  • Anthony J. Guttmann
    • Iwan Jensen

      There are no affiliations available

      Personalised recommendations