Novel Nanostructured Materials Accelerating Osteogenesis

  • B. Trajkovski
  • J. Karadjov
  • B. Shivachev
  • A. Dimitrova
  • S. Stavrev
  • M. D. Apostolova
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Osteoporosis is a disease in which the mineral density of bone is reduced, its microarchitecture disrupted, and the expression profile of non-collagenous proteins altered. Normal fracture treatment is a complicated, multistage process, involving different cellular events and regulated by local and systematic factors. The objective of this study was to develop bio-active nanostructured materials, in both acellular and autologous cell-seeded forms to enhance bone fracture fixation and healing thought creating highly porous structures which will promote osteogenesis. The approach to develop highly effective hydrogels for counteracting the effects of osteoporosis followed different ways: (a) synthetic and biological polymer chemistry, by using a thermally gelling polymer and nanodiamonds (ultradisperse diamond UDD) (b) experiments with cell models (endothelial progenitor cells EPC). Our investigations demonstrated that in vitro EPC transformation to osteoblasts was enhanced in the presence of a osteoprogenitor medium and UDD. These results provided initial evidence that synthetic nanomaterials may exhibit certain properties that are comparable to natural one, and nanomaterial architecture may serve as a superior scaffolding for promoting EPC transformation and biomineralization.


nanodiamonds angiogenesis osteogenesis hydrogels EPC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Kanis and O. Johnell, Osteoporos. Int. 16, 229 (2005).PubMedCrossRefGoogle Scholar
  2. 2.
    T. A. Ahmed, E. V. Dare, and M. Hincke, Tissue Eng. Part B Rev. 14, 199 (2008).PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng, X. et al., Ulus. Travma. Acil. Cerrahi. Derg. 14, 87 (2008).PubMedGoogle Scholar
  4. 4.
    S. Duvvuri, K. G. Janoria, and A. K. Mitra, J. Control Release 108, 282 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Chen and J. Singh, Int. J. Pharm. 295, 183 (2005).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Qiao, D. Chen, X. Ma, and Y. Liu, Int. J. Pharm. 294, 103 (2005).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Chen, R. Pieper, D. C. Webster, and J. Singh, Int. J. Pharm. 288, 207 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Pratoomsoot et al., Biomaterials 29, 272 (2008).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Choi and S. W. Kim, Pharm. Res. 20, 2008 (2003).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Choi, M. Baudys, and S. W. Kim, Pharm. Res. 21, 827 (2004).PubMedCrossRefGoogle Scholar
  11. 11.
    U.S. Patent 5353708, 1994.Google Scholar
  12. 12.
    BG Patent 49267 A. 1991.Google Scholar
  13. 13.
    T. Tsoncheva et al., J. Colloid Interface Sci. 300, 183 (2006).PubMedCrossRefGoogle Scholar
  14. 14.
    C. S. Yong et al., Int. J. Pharm. 226, 195 (2001).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Fuchs, A. Motta, C. Migliaresi, and C. J. Kirkpatrick, Biomaterials 27, 5399 (2006).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Fuchs, M. I. Hermanns, and C. J. Kirkpatrick, Cell Tissue Res. 326, 79 (2006).PubMedCrossRefGoogle Scholar
  17. 17.
    N. L. Woll, J. D. Heaney, and S. K. Bronson, Stem Cells Dev. 15, 865 (2006).PubMedCrossRefGoogle Scholar
  18. 18.
    K. M. Woo et al., Biomaterials 28, 335 (2007).PubMedCrossRefADSGoogle Scholar
  19. 19.
    M. D. Apostolova and M. G. Cherian, J. Cell Physiol. 183, 247 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    P. Ducy, R. Zhang, V. Geoffroy, A. L. Ridall, and G. Karsenty, Cell 89, 747 (1997).PubMedCrossRefGoogle Scholar
  21. 21.
    S. C. Marks and P. R. Odgren, in: J. P. Bilezikian, L. G. Raisz, and G. A. Rodan (Eds.), Principles of Bone Biology (Academic, San Diego, CA, 2002), pp. 3–15.Google Scholar
  22. 22.
    C. Desbois, D. A. Hogue, and G. Karsenty, J. Biol. Chem. 269, 1183 (1994).PubMedGoogle Scholar
  23. 23.
    P. Ducy et al., Nature 382, 448 (1996).PubMedCrossRefADSGoogle Scholar
  24. 24.
    J. Glowacki, C. Rey, M. J. Glimcher, K. A. Cox, and J. Lian, J. Cell Biochem. 45, 292 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • B. Trajkovski
    • 1
  • J. Karadjov
    • 2
  • B. Shivachev
    • 3
  • A. Dimitrova
    • 4
  • S. Stavrev
    • 2
  • M. D. Apostolova
    • 1
  1. 1.Medical and Biological Research Lab, Roumen Tzanev Institute of Molecular BiologyBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Bulgarian Academy of SciencesInstitute for Space ResearchSofiaBulgaria
  3. 3.Central Laboratory of Mineralogy and CrystallographyBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Department of Biology and PathophysiologyMedical University PlevenBulgaria

Personalised recommendations