Advertisement

Users’ Data

Collaborative and Social Analysis
  • Andreas HarrerEmail author
  • Alejandra Martínez-Monès
  • Angelique Dimitracopoulou

Interaction analysis has been used in computer-mediated settings for approximately two decades. Its main purpose has been to understand and identify the characteristics of electronic communication, collaboration and coordination. In recent years, however, its scope has expanded to include the support of students and teachers during online learning activities. This chapter documents the findings from three European projects that focused on this novel, supportive role for interaction analysis. Following the definition of interaction analysis indicators and their computation, the use of unified data formats and interfaces is considered as means for utilising tools and data beyond their original scope and settings. Finally, the issue of visualisation of analysis results is discussed.

Keywords

Interaction analysis Tools Data formats Network visualisations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avouris, N., Dimitracopoulou,A., & Komis, V. (2003). On analysis of collaborative problem solving: An object-oriented approach. Computers in Human Behavior, 19, 147–167.CrossRefGoogle Scholar
  2. Avouris, N., Margaritis,M., & Komis, V. (2004). Modelling interaction during small-group synchronous problem-solving activities: The Synergo approach. Paper presented at the 2nd International Workshop on Designing Computational Models of Collaborative Learning Interaction, ITS2004, 7th Conference on Intelligent Tutoring Systems, Maceio: Brasil.Google Scholar
  3. Bratitsis, T., & Dimitracopoulou, A. (2006). Monitoring and analyzing group interactions in asynchronous discussions with the DIAS system. In Y. Dimitriadis, I. Zigurs & E. Gomez-Sanchez (Eds.), Groupware: Design, implementation, and use; Proceedings the of the CRIWG 2006 workshop (pp. 54–61). Berlin, Germany: Springer.Google Scholar
  4. Bratitsis, T., & Dimitracopoulou, A. (2008). Interpretation issues in monitoring and analyzing group interactions in asynchronous discussions. International Journal of e-Collaboration, 4, 20–40.Google Scholar
  5. Card, K. S., Mackinlay,J. D., & Shneiderman, B. (1999). Readings in information visualization: Using vision to think. San Francisco: Morgan Kaufmann.Google Scholar
  6. Denzin, N. (1989). The research act: A theoretical introduction to sociological methods. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  7. Dimitracopoulou, A., et al. (2004). State of the art on interaction analysis: Interaction analysis indicators. Unpublished manuscript. Retrieved May 30, 2008, from www.noe-kaleidoscope.org: http://telearn.noe-kaleidoscope.org/open-archive/file?Dimitrakopoulou-Kaleidoscope-2004.pdfGoogle Scholar
  8. Dimitracopoulou, A., et al. (2005). State of the art of interaction analysis for metacognitive support and diagnosis. Unpublished manuscript. Retrieved May 30, 2008, from http://telearn.noe-kaleidoscope.org/open-archive/file?Dimitrakopoulou-Kaleidoscope-2006.pdfGoogle Scholar
  9. Gaßner K., Jansen,M., Harrer,A, Herrmann, K., & Hoppe, H. U. (2003). Analysis methods for collaborative models and activities. In B. Wasson, S. Ludvigsen & U. Hoppe (Eds.), Designing for change in networked learning environments (pp. 411–420). Dordrecht, The Netherlands: Kluwer.Google Scholar
  10. Goldman, R. (2004). Digital video design ethnography as a vehicle for change: A perspectivity meme spreads in a class of “wild and crazy teens”. Cambridge Journal of Education, 34, 157–178.CrossRefGoogle Scholar
  11. Granger, S., Kraif,O., Ponton,C., Antoniadis,G., & Zampa, V. (2007). Integrating learner corpora and natural language processing: A crucial step towards reconciling technological sophistication and pedagogical effectiveness. ReCALL, 19, 252–268.CrossRefGoogle Scholar
  12. Harasim, L. M. (1990). Online education: Perspectives on a new environment. New York: Praeger.Google Scholar
  13. Harrer, A., Hever,R., & Ziebarth, S. (2007). Empowering researchers to detect interaction patterns in e-collaboration. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Artificial intelligence in education: Building technology rich learning contexts that work (pp. 503–510). Amsterdam: IOS Press.Google Scholar
  14. Harrer, A., Zeini,S., & Pinkwart, N. (2006). Evaluation of communication in web-supported learning communities: An analysis with triangulation research design. International Journal of Web Based Communities, 2, 428–446.CrossRefGoogle Scholar
  15. Harrer, A., Vetter,M., Thür,S., & Brauckmann, J. (2005). Discovery of patterns in learner actions. In: C. -K. Looi, G. McCalla, B. Bredeweg & J. Breuker (Eds.), Artificial intelligence in education: Supporting learning through intelligent and socially informed technology (pp. 816–818). Amsterdam: IOS Press.Google Scholar
  16. Harrer, A., Zeini,S., Ziebarth,S., & Münter, D. (2007). Visualisation of the dynamics of computer-mediated community networks. Paper presented at International Sunbelt Social Network Conference, Corfu, Greece.Google Scholar
  17. Harrer, A., Kahrimanis,G., Zeini,S., Bollen,L., & Avouris, N. (2006). Is there a way to e-Bologna? Cross-national collaborative activities in university courses. Proceedings of the First European Conference on Technology Enhanced Learning (pp. 140–154). Berlin, Germany: Springer.Google Scholar
  18. Jermann, P. (2004). Computer support for interaction regulation in collaborative problem-solving. Unpublished doctoral dissertation, Universite de Geneve, Switzerland.Google Scholar
  19. Kay, J., Maisonneuve,N., Yacef,K., & Reimann, P. (2006). The big five and visualisations of team work activity. In M. Ikeda, K. D. Ashley & T. Chan (Eds.), Intelligent tutoring systems (pp. 197–206). Berlin, Germany: Springer.CrossRefGoogle Scholar
  20. Krempel, L (2005). Visualisierung komplexer Strukturen: Grundlagen der Darstellung mehrdimensionaler Netzwerke [Visualizing complex structures: Foundations for creating multidimensional networks]. Frankfurt am Main, Germany: Campus.Google Scholar
  21. Martínez, A., de la Fuente, P., & Dimitriadis, Y. (2003). Towards an XML-based representation of collaborative interaction. In B. Wasson, S. Ludvigsen & U. Hoppe (Eds.), Designing for change in networked learning environments (pp. 379–388). Dordrecht, The Netherlands: Kluwer.Google Scholar
  22. Martínez, A., Harrer,A., Barros,B., & Vèlez, J. (2005). Library of interaction analysis methods. Unpublished manuscript. Retrieved May 29, 2008, from http://www.noe-kaleidoscope.org
  23. Martínez, A., Dimitriadis,Y., Gòmez-Sànchez,E., Rubia-Avi,B., Jorrín-Abellàn,I., & Marcos, J. A. (2006). Studying participation networks in collaboration using mixed methods in three case studies. International Journal of Computer-Supported Collaborative Learning, 1, 383–408.CrossRefGoogle Scholar
  24. Meier, A., Spada,H., & Rummel, N. (2007). A rating scheme for assessing the quality of computer-supported collaboration processes. International Journal of Computer-Supported Collaborative Learning, 2, 63–86.CrossRefGoogle Scholar
  25. Moreno, J. L. (1951). Sociometry, experimental method and the science of society. New York: Beacon House.Google Scholar
  26. de Nooy, W., Mrvar,A., & Batagelj, V. (2005). Exploratory social network analysis with pajek. New York: Cambridge University Press.Google Scholar
  27. Palonen, T., & Hakkarainen, K. (2000). Patterns of interaction in computer-supported learning: A social network analysis. In B. Fishman & S. O’Conner-Divelbiss (Eds.), Proceedings of the Fourth International Conference on the Learning Sciences (pp. 334–339). Mahwah, NJ: Erlbaum.Google Scholar
  28. Reffay, C., & Chanier, T. (2003). How social network analysis can help to measure cohesion in collaborative distance learning. In B. Wasson, S. Ludvigsen & U. Hoppe (Eds.), Designing for change in networked learning environments (pp. 343–352). Dordrecht, The Netherlands: Kluwer.Google Scholar
  29. Soller, A., Martínez Monès, A., Jermann,P., & Muehlenbrock, M. (2005). From mirroring to guiding: A review on the state of the art technology for supporting collaborative learning. International Journal of Artificial Intelligence in Education, 15, 261–290.Google Scholar
  30. Sun, L., & Vassileva, J. (2006). Social visualization encouraging participation in online communities. In Y. Dimitriadis, I. Zigurs & E. Gomez-Sanchez (Eds.), Groupware: Design, implementation, and use; Proceedings the of the CRIWG 2006 workshop (pp. 349–363). Berlin, Germany: Springer.Google Scholar
  31. Wassermann, S., & Faust, K. (1994). Social network analysis: Methods and application. Cambridge, MA: Cambridge University Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Andreas Harrer
    • 1
    Email author
  • Alejandra Martínez-Monès
    • 2
  • Angelique Dimitracopoulou
    • 3
  1. 1.Department of Computer ScienceCatholic UniversityEichstätt-IngolstadtGermany
  2. 2.Department of Computer ScienceUniversity of ValladolidValladolidSpain
  3. 3.Learning Technology and Educational Engineering Laboratory, School of Human StudiesUniversity of the AegeanRhodesGreece

Personalised recommendations