Advertisement

Oceanographical and Geological Background

  • Pinxian WangEmail author
  • Qianyu Li
Part of the Developments in Paleoenvironmental Research book series (DPER, volume 13)

The South China Sea (SCS) embraces an area of about 3.5 x 106 km2 and extends from the Tropic of Cancer to the Equator, across over 20 degrees of latitude in the west Pacific. Since the last decade, the SCS has become the focus in studying the East Asian monsoon, like the Arabian Sea for the Indian monsoon (Wang B. et al. 2003). The SCS offers an ideal locality for high-resolution paleoceanographic researches in the low-latitude western Pacific because its hemipelagic sediments often register higher deposition rates and its carbonate compensation depth (CCD) is generally deeper than neighboring sea basins (Wang P. 1999).

Keywords

East Asian Monsoon Cyclonic Gyre Qiongdongnan Basin Sunda Shelf Yinggehai Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASCOPE (Asean Council on Petroleum) 1981. Tertiary Sedimentary Basins of the Gulf of Thailand and South China Sea: Stratigraphy, Structure and Hydrocarbon Occurrences. ASCOPE, Jakarta, Indonesia, 72pp.Google Scholar
  2. Ali M.Y. 1995. Carbonate cement stratigraphy and timing of diagenesis in a Miocene mixed carbonate-clastic sequence, offshore Sabah, Malaysia: constraints from cathodoluminescence, geochemistry and isotope studies. Sedimentary Geol. 22: 191–214.Google Scholar
  3. Balaguru A. and Nichols G. 2004. Tertiary stratigraphy and basin evolution, southern Sabah (Malaysian Borneo). J. Asian Earth Sci. 23: 537–554.Google Scholar
  4. Barckhausen U. and Roeser H.A. 2004. Seafloor spreading anomalies in the South China Sea revisited. In: Clift P., Wang P., Kuhnt W. and Hayes D. (eds.), Continent-Ocean Interactions within East Asian Marginal Seas. AGU Geophys. Monogr. 149: 121–125.Google Scholar
  5. Briais A., Patriat P. and Tapponnier P. 1993. Update interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of southeast Asia. J. Geophys. Res. 98(B4): 6299–6328.Google Scholar
  6. Chao S.Y., Shaw P.T. and Wu S.Y. 1996. El Nino modulation of the South China Sea circulation. Progr. Oceanogr. 38: 51–93.Google Scholar
  7. Chen L. 1992. Features of the East Asian monsoon. In: Murakami M. and Ding Y. (eds.), Studies of Asian Monsoon in Japan and China. Meteorol. Res. Inst., Ibaraki, Japan, pp. 220–235.Google Scholar
  8. Chen C.T.A., Wang S.L., Wang B.J. and Pai S.C. 2001. Nutrient budgets for the South China Sea basin. Mar. Chem. 75: 281–300.Google Scholar
  9. Chen C.T.A. and Huang M.H. 1996. A mid-depth front separating the South China Sea water and the Philippine Sea water. J. Oceanogr. 52: 17–52.Google Scholar
  10. Chu P.C. and Wang G. 2003. Seasonal variability of thermohaline front in the central South China Sea. J. Oceanogr. 59: 65–78.Google Scholar
  11. Clift P.D. and Lin J. 2001. Preferential mantle lithospheric extension under the South China margin. Mar. Petroleum Geol. 18: 929–945.Google Scholar
  12. Clift P.D., Shimizu N., Layne G.D. and Blusztajn J. 2001. Tracing patterns of unroofing in the Early Himalaya through microprobe Pbisotope analysis of detrital K-feldspars in Indus Molasse, India. Earth Planet. Sci. Lett. 188: 475–491.Google Scholar
  13. Copeland P. 1997. The when and where of the growth of the Himalaya and the Tibetan Plateau. In: Ruddiman W.F. (ed.), Tectonic Uplift and Climate Change. Plenum, New York, pp. 19–40.Google Scholar
  14. Clift P.D., Layne G.D. and Blusztajn J. 2004. Marine sedimentary evidence for monsoon strengthening, Tibetan uplift and drainage evolution in East Asia. In: Clift P., Wang P., Kuhnt W. and Hayes D. (eds.), Continent-Ocean Interactions within East Asian Marginal Seas. AGU Geophys. Monogr. 149: 255–282.Google Scholar
  15. Ding Y., Li C. and Liu Y. 2004. Overview of the South China Sea Monsoon Experiment. Adv. Atmospheric Sci. 21: 343–360.Google Scholar
  16. Dong L., Su J., Wong L.A., Cao Z. and Chen J.C. 2004. Seasonal variations and dynamics of the Pearl River plume. Continental Shelf Res. 24: 1761–1777.Google Scholar
  17. Du Bois E.P. 1985. Review of principal hydrocarbon-bearing basins around the South China Sea. Bull. Geol. Soc. Malaysia 18: 167–209.Google Scholar
  18. Elburg M.A. and Foden J. 1999. Geochemical response to varying tectonic settings: An example from southern Sulawesi (Indonesia). Geochim. Cosmochim. Acta 63: 1155–1172.Google Scholar
  19. Fan W. and Menzies M.A. 1992. The lithospheric mantle composition of volcanism in extension settings: the geochemical evidence of Cenozoic basalts in Leiqiong area. In: Liu R. (ed.), The Ages and Geochemistry of Cenozoic Volcanic Rocks in China. Seismological Press, Beijing, pp. 320–329.Google Scholar
  20. Fang G.H., Fang W.D., Fang Y. and Wang K. 1998. A survey of studies on the South China Sea upper ocean circulation. Acta Oceanogr. Taiwanica 37: 1–16.Google Scholar
  21. Fang W., Fang G., Shi P., Huang Q. and Xie Q. 2002. Seasonal structures of upper layer circulation in the southern South China Sea from in situ observations. J. Geophys. Res. 107: C11 3202, doi:10.1029/2002 JC001343.Google Scholar
  22. Gilley L.D., Harrison T.M., Leloup P.H., Ryerson F.J., Lovera O.M. and Wang J.H. 2003. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam. J. Geophys. Res. 108(B2): 2127, doi:10.1029/2001JB001726.Google Scholar
  23. Gong G.C., Liu K.K., Liu C.T. and Pai S.C. 1992. The chemical hydrography of the South China Sea west of Luzon and a comparison with the West Philippine Sea. Terr. Atmos. Ocean. Sci. (TAO) Taipei 13: 587–602.Google Scholar
  24. Gong Z. and Li S. (eds.). 1997. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. China Sci. Press, Beijing, 510pp (in Chinese).Google Scholar
  25. Gradstein F., Ogg J. and Smith A. (eds.). 2004. A Geologic Time Scale 2004. Cambridge Univ. Press, Cambridge, 589pp.Google Scholar
  26. Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20: 353–431.Google Scholar
  27. Hall R. and Morley C.K. 2004. Sundaland basins. In: Clift P., Wang P., Kuhnt W. and Hayes D. (eds.), Continent-Ocean Interactions within East Asian Marginal Seas. AGU Geophys. Monogr. 149: 55–85.Google Scholar
  28. Harrison T.M., Copeland P., Kidd W.S.F. and Yin A. 1992. Raising Tibet. Science 255: 1663–1670.Google Scholar
  29. Haq B.U., Hardenbol J. and Vail P.R. 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science 235: 1156–1167.Google Scholar
  30. Hawkins J.W., Lonsdale P.F., Macdougall J.D. and Volpe A.M. 1990. Petrology of the axial ridge of Mariana Trough backarc spreading center. Earth Planet. Sci. Lett. 100: 226–250.Google Scholar
  31. Hayes D.S. and Nissen S.S. 2005. The South China Sea margins: Implications for rifting contrasts. Earth Planet. Sci. Lett. 237: 601–616.Google Scholar
  32. Hayes D.E., Nissen S.S., Buhl P., Diebold J., Yao B., Zeng W. and Chen Y. 1995. Throughgoing crustal faults along the northern margin of the South China Sea and their role in crustal extension. J. Geophys. Res. 100: 22435–22446.Google Scholar
  33. Holloway N.H. 1982. North Palawan Block, Philippines, its relation to Asian mainland and role in evolution of South China Sea. AAPG Bull. 66: 1355–1383.Google Scholar
  34. Honza E. and Fujioka K. 2004. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous. Tectonophysics 384: 23–53.Google Scholar
  35. Hsu M.K., Liu A.K. and Liu C. 2000. A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Res. 20: 389–410.Google Scholar
  36. Hsu S.K., Yeh Y.C., Doo W.B. and Tsai C.H. 2004. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Mar. Geophys. Res. 25: 29–44.Google Scholar
  37. Hsueh Y. and Zhong L. 2004. A pressure-driven South China Sea warm current. J. Geophys. Res. 109: C09014, doi:10.1029/2004JC002374.Google Scholar
  38. Huang C.Y., Wu W.Y., Chang C.P., Tsao S., Yuan P.B., Lin C.W. and Xia K.Y. 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics 281: 31–51.Google Scholar
  39. Hutchison C.S. 2004. Marginal basin evolution: the southern South China Sea. Mar. Petroleum Geol. 21: 1129–1148.Google Scholar
  40. Jin Q. (ed.). 1989. The Geology and Petroleum Resources in the South China Sea. Geol. Publ. House, Beijing, 417pp (in Chinese).Google Scholar
  41. Lallemand S., Heuret A. and Boutelier D. 2005. On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones. Geochem. Geophys. Geosyst. 6: Q09006, doi:10.1029/2005GC000917.Google Scholar
  42. Lee T.-Y. and Lawver L.A. 1994. Cenozoic plate reconstruction of the South China Sea region. Tectonophysics 235: 149–180.Google Scholar
  43. Lee T.-Y., Tang C.-H., Ting J.-S. and Hsu Y.-Y. 1993. Sequence stratigraphy of the Tainan Basin, offshore southwestern Taiwan. Petroleum Geol. Taiwan 28: 119–158.Google Scholar
  44. Leloup P.H., Arnaud N., Lacassin R., Kienast J.R., Harrison T.M., Phan Trong T.T., Replumaz A. and Tapponnier T. 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia. J. Geophys. Res. 106: 6683–6732.Google Scholar
  45. Li C., Zhou Z., Hao H., Chen H., Wang J., Chen B. and Wu J. 2008. Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin. J. Asian Earth Sci. 31: 546–561.Google Scholar
  46. Linthout K., Helmers H. and Sopaheluwakan J. 1997. Late Miocene obduction and microplate migration around the southern Banda Sea and the closure of the Indonesian Seaway. Tectonophysics 281: 17–3.Google Scholar
  47. Liu Z., Wang P., Wang C., Shao L. and Huang W. 2001. Paleotopography of China during the Cenozoic: a preliminary study. Geol. Rev. 47(5): 467–475 (in Chinese).Google Scholar
  48. Liu A.K., Chang Y.S., Hsu M.-K. and Liang N.K. 1998. Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res. 103(C4): 7995–8008.Google Scholar
  49. Liu Q., Yang H. and Wang Q. 2000. Dynamic characteristics of seasonal thermocline in the deep sea region of the South China Sea. Chinese J. Oceanol. Limnol. 18(2): 104–109.Google Scholar
  50. Liu K.-K., Chao S.-Y., Shaw P.-T., Gong G.-C., Chen C.-C. and Tang T.Y. 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Res. I 49: 1387–1412.Google Scholar
  51. Liu Q., Jiang X., Xie S.-P. and Liu W.T. 2004. A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: Seasonal development and interannual variability. J. Geophys. Res. 109: C07012, doi: 10.1029/2003JC002179.Google Scholar
  52. Liu C.-T., Pinkel R., Hsu M.-K., Klymak J.M., Chen H.-W. and Villanov C. 2006. Nonlinear internal waves from the Luzon Strait. EOS, Trans. AGU 87(42): 449–451.Google Scholar
  53. Lüdmann T. and Wong H.K. 1999. Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics 311: 113–138.Google Scholar
  54. Madon M.B. and Watts A.B. 1998. Gravity anomalies, subsidence history and the tectonic evolution of the Malay and Penyu Basins (offshore Peninsular Malaysia). Basin Res. 10: 375–392.Google Scholar
  55. Metzger E.J. and Hurlburt H.E. 1996. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res. 101: 12331–12352.Google Scholar
  56. Metzger E.J. and Hurlburt H.E. 2001. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea. J. Phys. Oceanogr. 31: 1712–1732.Google Scholar
  57. Morley C.K. 2002. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics 347: 189–215.Google Scholar
  58. Nielsen L.H., Mathiesen A., Bidstrup T., Vejbñk O.V., Dien P.T. and Tiem P.V. 1999. Modeling of hydrocarbon generation in the Cenozoic Song Hong Basin, Vietnam: a highly prospective basin. J. Asian Earth Sci. 17: 269–294.Google Scholar
  59. Nissen S.S., Hayes D.E., Buhl P., Diebold J., Bochu Y., Weijun Z. and Chen Y. 1995. Deep penetration seismic soundings across the northern margin of the South China Sea, J. Geophys. Res. 100(B11): 22407–22434.Google Scholar
  60. Nitani, H. 1972. Beginning of the Kuroshio. In: Stommel H., Yoshida K.(eds.), Kuroshio: Its Physical Aspects. University of Washington Press, Seattle, pp. 129–163.Google Scholar
  61. Pigott J.D. and Ru K. 1994. Basin superposition on the northern margin of the South China Sea. Tectonophysics 235: 27–50.Google Scholar
  62. Pubellier M. and Chan L.S. (eds.). 2006. Morphotectonic Map of Cenozoic Structures of the South China-Northern Vietnam Coastal Region. Output-express Print Office. Hong Kong, 16pp (CD-ROM).Google Scholar
  63. Pubellier M., Ego F., Chamot-Rooke N. and Rangin C. 2003. The building of pericratonic mountain ranges: structural and kinematic constraints applied to GIS-based reconstructions of SE Asia. Bull. Soc. Geol. France 174: 561–584.Google Scholar
  64. Pubellier M., Monnier C., Maury R. and Tamayo R. 2004. Plate kinematics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia. Tectonophysics 92: 9–36.Google Scholar
  65. Pubellier M., Rangin C., Ego F., et al. 2005. Altas of the Margin of SE Asia. Soc. Geol. France/AAPG Spec. Publ. 176 (CD-ROM).Google Scholar
  66. Qiu X., Ye S., Wu S., Shi X., Zhou D., Xia K. and Flueh R. 2001. Crustal structure across the Xisha Trough, northwestern South China Sea. Tectonophysics 341: 179–193.Google Scholar
  67. Qu T. 2000. Upper-layer circulation in the South China Sea. J. Phys. Oceanogr. 30: 1450–1460.Google Scholar
  68. Qu T. 2002. Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait. Acta Oceanol. Sinica 21(2): 175–185.Google Scholar
  69. Qu T., Girton J.B. and Whitehead J.A. 2006. Deepwater overflow through Luzon Strait. J. Geophys. Res. 111: C01002, doi: 10.1029/2005JC003139.Google Scholar
  70. Qu T., Mitsudera H. and Yamagata T. 2000. Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res. 105(C3): 6415–6424.Google Scholar
  71. Rangin C., Stephan J.F. and Mueller C. 1985. Middle Oligocene oceanic crust of South China Sea jammed into Mindoro collision zone (Philippines). Geology 13: 425–428.Google Scholar
  72. Ru K. and Pigott J.D. 1986 Episodic rifting and subsidence in the South China Sea. AAPG Bull. 70: 1136–1155.Google Scholar
  73. Ru K., Zhou D. and Chen H. 1994. Basin evolution and hydrocarbon potential of the northern South China Sea. In: Zhou D., Liang Y. and Zeng C. (eds.), Oceanology of China Seas. Kluwer Press, New York, vol. 2, pp. 361–372.Google Scholar
  74. Schlüter H.U., Hinz K. and Block M. 1996. Tectono-stratigraphic terranes and detachment faulting of the South China Sea and Sulu Sea. Mar. Geol. 130: 39–78.Google Scholar
  75. Shaw P.T. 1996. Winter upwelling off Luzon in the Northeastern South China Sea. J. Geophys. Res. 101: 16435–16448.Google Scholar
  76. Shaw P.T. and Chao S.Y. 1994. Surface circulation in the South China Sea. Deep-Sea Res. I 41: 1663–1683.Google Scholar
  77. Shi P., Du Y.,Wang D.X. and Gan Z.J. 2001. Annual cycle of mixed layer in South China Sea. Tropical Oceanol. 20: 10–17 (in Chinese).Google Scholar
  78. Sibuet J.C., Hsu S.K. and Debayle E. 2004. Geodynamic context of the Taiwan orogen. In: Clift P., Wang P., Kuhnt W. and Hayes D. (eds.), Continent-Ocean Interactions within East Asian Marginal Seas. AGU Geophys. Monogr. 149: 127–158.Google Scholar
  79. Sibuet J.C., Hsu S.K., Le Pichon X., Le Formal J.P. and Reed D. 2002. East Asia plate tectonics since 15 Ma: constraints from the Taiwan region. Tectonophysics 344: 103–134.Google Scholar
  80. Su J. 2004. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Continental Shelf Res. 24: 1745–1760.Google Scholar
  81. Tapponnier P., Peltzer G. and Armijo R. 1986. On the mechanics of the collision between India and Asia. In: Coward M.P. and Ries A.C. (eds.), Collision Tectonics. Blackwell, Oxford, pp. 115–157.Google Scholar
  82. Tapponnier P., Peltzer G., Le Dain A.Y., Armijo R. and Cobbold P. 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10: 611–616.Google Scholar
  83. Tapponnier P., Xu Z., Roger F., Meyer B., Arnaud N., Wittlinger G. and Yang J. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294: 1671–1677.Google Scholar
  84. Taylor B. and Hayes D.E. 1980. The tectonic evolution of the South China Sea Basin. In: Hayes D.E. (ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. AGU Geophys. Monogr., Washington, D.C., pp. 89–104.Google Scholar
  85. Taylor B. and Hayes D.E. 1983. Origin and history of the South China Sea basin. In: Hayes D.E. (ed.), The Tectonics and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. AGU Geophys. Monogr., Washington, D.C., pp. 23–56.Google Scholar
  86. Taylor B. and Natland J. (eds.). 1995. Active Margins and Marginal Basins of the Western Pacific. AGU Geophys. Monogr., Washington, D.C., 88, p. 417.Google Scholar
  87. Tian J.W., Yang Q., Liang X., Xie L., Hu D., Wang F. and Qu T. 2006. Observation of Luzon Strait transport. Geophys. Res. Lett. 33: L19607, doi: 10.1029/2006GL026272.Google Scholar
  88. Wang C. 1996. Sequence stratigraphic analysis of marine Miocene formations in the Pearl River Mouth Basin and its significance. China Offshore Oil Gas (Geol.) 10(5): 279–288 (in Chinese).Google Scholar
  89. Wang P. 1999. Response of Western Pacific marginal seas to glacial cycles: Paleoceanographic and sedimentological features. Mar. Geol. 156: 5–39.Google Scholar
  90. Wang L., Koblinsky C.J. and Howden S. 2000. Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep-Sea Res. I 47: 681–708.Google Scholar
  91. Wang P., Prell W.L., Blum P. (eds.). 2000. Proc. ODP, Init. Repts, Vol. 184 [CD-ROM]. Ocean Drilling Program, Texas A&M University, College Station TX 77845–9547, USA.Google Scholar
  92. Wang D., Du Y. and Shi P. (eds.). 2002. Climatological Atlas of Physical Oceanography in the Upper Layer of the South China Sea. Meteorol. Press, Beijing, 168pp (in Chinese).Google Scholar
  93. Wang G., Su J. and Chu P.C. 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett. 30(21): 2121, doi: 10.1029/2003GL018532.Google Scholar
  94. Wang R., Clemens S., Huang B. and Chen M. 2003. Late Quaternary paleoceanographic changes in the northern South China Sea (ODP Site 1146): radiolarian evidence. J. Quat. Sci. 18(8): 745–756.Google Scholar
  95. Wang B., Clemens S.C. and Liu P. 2003. Contrasting the Indian and East Asian monsoons: implications on geological timescales. Mar. Geol. 201: 5–21.Google Scholar
  96. Wang P. 2004. Cenozoic deformation and the history of sea-land interactions in Asia. In: Clift P., Wang P., Kuhnt W. and Hayes D. (eds.), Continent-Ocean Interactions in the East Asian Marginal Seas. AGU Geophys. Monogr. 149: 1–22.Google Scholar
  97. Wang G., Chen D. and Su J. 2006. Generation and life cycle of the dipole in the South China Sea summer circulation. J. Geophys. Res. 111: C06002, doi: 10.1029/2005JC003314.Google Scholar
  98. Wheeler P. and White N. 2002. Measuring dynamic topography: An analysis of Southeast Asia. Tectonics 21: 1040, doi:10.1029/2001TC900023.Google Scholar
  99. Wong G.T.F., Ku T.L., Mulholland M., Tseng C.M. and Wang D.P. 2007a. The South East Asian Time-series Study (SEATS) and the biogeochemistry of the South China Sea-An overview. Deep-Sea Res. II 54: 1434–1447.Google Scholar
  100. Wong G.T.F., Tseng C.M., Wen L.S. and Chung S.W. 2007b. Nutrient dynamics and nitrate anomaly at the SEATS station. Deep-Sea Res. II 54: 1528–1545.Google Scholar
  101. Wyrtki K. 1961. Physical oceanography of the Southeast Asian waters. NAGA, La Jolla, Calif., Rept. 2: 1–195.Google Scholar
  102. Xia K.Y. and Zhou D. 1993. The geophysical characteristics and evolution of northern and southern margins of the South China Sea. Geol. Soc. Malaysia Bull. 33: 223–240.Google Scholar
  103. Xia B., Zhang Y., Cui X.J., Liu B.M., Xie J.H., Zhang S.L. and Lin G. 2006. Understanding of the geological and geodynamic controls on the formation of the South China Sea: A numerical modelling approach. J. Geodynamics 42: 63–84.Google Scholar
  104. Xie S.P., Xie Q., Wang D. and Liu W.T. 2003. Summer upwelling in the South China Sea and its role in regional climate variations. J. Geophys. Res. 108(C8): 3261, doi: 10.1029/2003JC00 1867.Google Scholar
  105. Xie X., Müller R.D, Li S., Gong Z. and Steinberger B. 2006. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Mar. Petroleum Geol. 23: 745–765.Google Scholar
  106. Yang H.J. and Liu Q.Y. 1998. The seasonal features of temperature distributions in the upper layer of the South China Sea. Oceanol. Limn. Sinica 29: 501–507 (in Chinese).Google Scholar
  107. Yan P. and Liu H. 2004. Tectonic-stratigraphic division and blind fold structures in Nansha waters, South China Sea. J. Asian Earth Sci. 24: 337–348.Google Scholar
  108. Yan P., Zhou D. and Liu Z. 2001. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics 338: 1–21.Google Scholar
  109. Yao B. 1996. Tectonic evolution of the South China Sea in the Cenozoic. Mar. Geol. Quat. Geol. 16(2): 1–13 (in Chinese).Google Scholar
  110. Yao B., Wan L. and Wu N. 2005. Cenozoic tectonic evolution and the 3D structure of the lithosphere of the South China Sea. Geol. Bull. China 24: 1–8 (in Chinese).Google Scholar
  111. Yeh Y.C. and Hsu S.K. 2004. Crustal structures of the northernmost South China Sea: Seismic reflection and gravity modeling. Mar. Geophys. Res. 25: 45–61.Google Scholar
  112. Yuan D.L. 2002. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanol. Sinica 21: 187–202.Google Scholar
  113. Yumul G.P. Jr., Dimalanta C.B., Tamayo R.A. Jr. and Maury R.C. 2003. Collision, subduction and accretion events in the Philippines: A synthesis. Island Arc 12: 77–91.Google Scholar
  114. Yu H.S. and Chou Y.W. 2001. Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics 333: 277–291.Google Scholar
  115. Zhou D., Ru K. and Chen H.Z. 1995. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region. Tectonophysics 251: 161–177.Google Scholar
  116. Zhou Z., Jin X., Wang L., Jian Z. and Xu C. 2004. Two closures of the Indonesian seaway and its relationship to the formation and evolution of the western Pacific warm Pool. Mar. Geol. Quat. Geol. 24: 7–14 (in Chinese).Google Scholar
  117. Zhu B. and Wang H. 1989. Nd-Sr-Pb isotope and chemical evidence for the volcanism with MORB-OIB source characteristics in the Leiqiong area, China. Geochimica 18: 193–201.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Marine GeologyTongji University200092 ShanghaiChina, People’s Republic
  2. 2.School of Earth and Environmental SciencesThe University of AdelaideAustralia

Personalised recommendations