The Nile pp 61-72 | Cite as

Late Quaternary Environments in the Nile Basin

  • Martin A.J. Williams
  • Michael R. Talbot
Part of the Monographiae Biologicae book series (MOBI, volume 89)

The Late Quaternary history of the Nile has been reconstructed using well-dated sedimentary, stable isotope and fossil records and associated archaeological remains. The White Nile flows over the bed of an ancient lake dating to ~ 400 ka (Marine Isotope Stage 11). High flood levels in the White Nile since that time appear to coincide with times of sapropel accumulation in the eastern Mediterranean. During times of aridity, the most recent phase being roughly coeval with the Last Glacial Maximum, the large lakes in Uganda either dried out or were too low to provide flow into the White Nile, which became a highly seasonal river, as did the main Nile.

The sediments of Lake Albert, from where the White Nile starts its long journey to the Mediterranean, preserve critical evidence on the discharge history of this river. The lake's sedimentary record confirms the coincidence between overflow of Lake Victoria and reestablishment of flow in the White Nile north of Khartoum at ~14.5 ka and also shows a lake low-stand at ~ 4.2 ka that, by cutting off flow to the White Nile, may have contributed to the fall of Egypt's Old Kingdom. The modern hydrological regime in the Nile was thus re-established at ~14.5 ka, with strengthening of the summer monsoon and overflow from Lake Victoria. A modest number of calibrated radiocarbon ages on White Nile gastropod shells indicate that White Nile levels were high around 14.7–13.1 ka, 9.7–9.0, 7.9–7.6, 6.3 and 3.2–2.8 ka. The Blue Nile and main Nile flood records, albeit less complete, accord with those of the White Nile. Preliminary OSL ages obtained by us from the upper 2 m of dunes west of the White Nile and main Nile show discrete phases of Holocene dune activity that seem to correlate with at least three of six significant periods of rapid global climatic change during 9–8, 6–5, 4.2–3.8, 1.2–1.0 and 0.6–0.15 ka, the first five of which coincided with polar cooling and tropical aridity. The intervals in between were wetter in the tropics and, allowing for dating errors, tally reasonably well with the intervals of high White Nile floods identified here.


Summer Monsoon Late Pleistocene Last Glacial Maximum Marine Isotope Stage Nile Delta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abell, P. I. & P. Hoelzmann, 2000. Holocene palaeoclimates in northwestern Sudan: stable isotope studies on molluscs. Global and Planetary Change 26: 1–12.CrossRefGoogle Scholar
  2. Adamson, D. A., F. Gasse, F. A. Street & M. A. J. Williams, 1980. Late Quaternary history of the Nile. Nature 287: 50–55.CrossRefGoogle Scholar
  3. Ayliffe, D., M. A. J. Williams & F. Sheldon, 1996. Stable carbon and oxygen isotopic composition of early-Holocene gastropods from Wadi Mansurab, north-central Sudan. The Holocene 6: 157–169.CrossRefGoogle Scholar
  4. Beuning, K. R. M., M. R. Talbot & K. Kelts, 1996. A revised 30,000-year paleoclimatic and paleohydrologic history of Lake Albert, East Africa. Palaeogeography Palaeoclimatology Palaeoecology 136: 259–279.CrossRefGoogle Scholar
  5. Butzer, K. W., 1980. Pleistocene history of the Nile Valley in Egypt and Lower Nubia. In M. A. J. Williams & H. Faure (eds), The Sahara and the Nile: Quaternary Environments and Prehistoric Occupation in Northern Africa. Balkema, Rotterdam, pp. 253–280.Google Scholar
  6. Chylek, P., G. Lesins & U. Lohmann, 2001. Enhancement of dust source area during past glacial periods due to changes of the Hadley circulation. Journal of Geophysical Research 106: 18477–18485.CrossRefGoogle Scholar
  7. Claussen, M., V. Brovkin, A. Ganopolski, C. Kubatzki & V. Petoukhov, 1998. Modelling global terrestrial vegetation-climate interaction. Philosophical Transactions of the Royal Society of London B 353: 53–63.CrossRefGoogle Scholar
  8. Freydier, R., A. Michard, G. De Lange & J. Thomson, 2001. Nd isotopic compositions of Eastern Mediterranean sediments: tracers of the Nile influence during sapropel S1 formation. Marine Geology 177: 45–62.CrossRefGoogle Scholar
  9. Gani, N. D. S., M. R. Gani & M. G. Abdelsalam, 2007. Blue Nile incision on the Ethiopian Plateau: pulsed plateau growth, Pliocene uplift, and hominin evolution. GSA Today 17 (9): 4–11.CrossRefGoogle Scholar
  10. Garzanti, E., S. Ando, G. Vezzoli, A. A. Megid & A. Kammar, 2006 Petrology of Nile River sands (Ethiopia and Sudan): sediment budgets and erosion patterns. Earth and Planetary Science Letters 252: 327–341.CrossRefGoogle Scholar
  11. Hassan, F. A., 1981. Historical Nile floods and their implications for climatic change. Science 212: 1142–1145.PubMedCrossRefGoogle Scholar
  12. Hurni, H., 1982. Climate and the Dynamics of Altitudinal Belts from the Last Cold Period to the Present Day, Simen Mountains-Ethiopia, Volume 2. Geographica Bernensia, G13, University of Berne, Berne, Switzerland.Google Scholar
  13. Krom, M. D., D. Stanley, R. A. Cliff & J. C. Woodward, 2002. Nile River sediment fluctuations over the past 7000 yr and their key role in sapropel development. Geology 30: 71–74.CrossRefGoogle Scholar
  14. Kuper, K. & S. Kröpelin, 2006. Climate-controlled Holocene occupation in the Sahara: motor of Africa's evolution. Science 313: 803–807.PubMedCrossRefGoogle Scholar
  15. Lamb, H. F., R. Bates, M. H. Marshall, M. Umer, S. J. Davies & H. H. Toland, 2007. Pleistocene desiccation of Lake Tana, source of the Blue Nile. Quaternary International 167–168, 226.Google Scholar
  16. Larrasoaňa, J. C., A. P. Roberts, E. J. Rohling, M. Winklhofer & R. Wehausen, 2003. Three million years of monsoon variability over the northern Sahara. Climate Dynamics 21: 689–698.CrossRefGoogle Scholar
  17. Mayewski, P. A., E. E. Rohling, J. C. Stager et al., 2004. Holocene climate variability. Quaternary Research 62: 243–255.CrossRefGoogle Scholar
  18. McDougall, I., W. H. Morton & M. A. J. Williams, 1974. Age and rates of denudation of Trap Series basalts at Blue Nile Gorge, Ethiopia. Nature 254: 207–209.CrossRefGoogle Scholar
  19. Pik, R., B. Marty, J. Carignan & J. Lave, 2003. Stability of the Upper Nile drainage network (Ethiopia) deduced from (U-Th)/He thermochronometry: implications for uplift and erosion of the Afar plume dome. Earth and Planetary Science Letters 6813: 1–17.Google Scholar
  20. Rodrigues, D., P. I. Abell & S. Kröpelin, 2000. Seasonality in the early Holocene climate of Northwest Sudan: interpretation of Etheria elliptica shell isotopic data. Global and Planetary Change 26: 181–187.CrossRefGoogle Scholar
  21. Rossignol-Strick, M., 1985. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation. Palaeogeography Palaeoclimatology Palaeoecology 49: 237–263.CrossRefGoogle Scholar
  22. Rossignol-Strick, M., W. Nesterhoff, P. Olive & C. Vergnaud-Grazzini, 1982. After the deluge: Mediterranean stagnation and sapropel formation. Nature 295: 105–110.CrossRefGoogle Scholar
  23. Scrivner, A. E., D. Vance & E. J. Rohling, 2004. New neodymium isotope data quantify Nile involvement in Mediterranean anoxic episodes. Geology 32: 565–568.CrossRefGoogle Scholar
  24. Stanley, J.-D., M. D. Krom, R. A. Cliff & J. C. Woodward, 2003. Nile flow failure at the end of the Old Kingdom, Egypt: strontium isotopic and petrologic evidence. Geoarchaeology 18: 395–402.CrossRefGoogle Scholar
  25. Sylvestre, F., F. Gasse, M. Williams, F. Chalie, A. Vincens & D. Williamson, 2007. Late Quaternary climates in Africa, South America and Australia. Quaternary International 167–168: 409.Google Scholar
  26. Talbot, M. R., M. A. J. Williams & D. A. Adamson, 2000. Strontium isotope evidence for late Pleistocene reestablishment of an integrated Nile drainage network. Geology 28: 343–346.CrossRefGoogle Scholar
  27. Talbot, M. R., M. L. Filippi, M. B. Jensen & J.-J. Tiercelin, 2007. An abrupt change in the African Monsoon at the end of the Youger Dryas. Geochemistry Geophysics Geosystems 8, Q03005. DOI 10. 1029/2006GC001465.Google Scholar
  28. Welsby, D. A., M. G. Macklin & J. C. Woodward, 2002. Human responses to Holocene environmental changes in the northern Dongola reach of the Nile, Sudan. In R. Friedman (ed), Egypt and Nubia: Gifts of the Desert. British Museum Press, London, pp. 28–38.Google Scholar
  29. Williams, M. A. J., 1966. Age of alluvial clays in the western Gezira, Republic of the Sudan. Nature 211: 270–271.CrossRefGoogle Scholar
  30. Williams, M. A. J., (in press). Late Pleistocene and Holocene environments in the Nile basin. Global and Planetary Change.Google Scholar
  31. Williams, M. A. J. & D. A. Adamson, 1973. The physiography of the central Sudan. The Geographical Journal 139: 498–508.CrossRefGoogle Scholar
  32. Williams, M. A. J. & D. A. Adamson (eds), 1982. A Land Between Two Niles: Quaternary Geology and Biology of the Central Sudan. Balkema, Rotterdam, 246 pp.Google Scholar
  33. Williams, M. A. J. & H. Faure (eds), 1980. The Sahara and the Nile: Quaternary environments and prehistoric occupation in northern Africa. Balkema, Rotterdam, 607 pp.Google Scholar
  34. Williams, M. & J. Nottage, 2006. Impact of extreme rainfall in the central Sudan during 1999 as a partial analogue for reconstructing early Holocene prehistoric environments. Quaternary International 150: 82–94.CrossRefGoogle Scholar
  35. Williams, M. A. J., A. H. Medani, J. A. Talent & R. A. Mawson, 1974. A note on Upper Quaternary sub-fossil mollusca west of Jebel Aulia. Sudan Notes and Records 54: 168–172.Google Scholar
  36. Williams, M. A. J., F. A. Street & F. M. Dakin, 1978. Fossil periglacial deposits in the Semien highlands, Ethiopia. Erdkunde 32: 40–46.CrossRefGoogle Scholar
  37. Williams, M. A. J., D. Dunkerley, P. De Deckker, P. Kershaw & J. Chappell, 1998. Quaternary Environments (Second Edition). Arnold, London, 329 pp.Google Scholar
  38. Williams, M. A. J., J. R. Prescott & F. M. Williams, F. M., 2003. New light on the age of the White Nile. Geology 31: 1001–1004.CrossRefGoogle Scholar
  39. Williams, M., M. Talbot, P. Aharon, Y. A. Salaam, F. Williams & K. I. Brendeland, 2006. Abrupt return of the summer monsoon 15,000 years ago: new supporting evidence from the lower White Nile valley and Lake Albert. Quaternary Science Reviews 25: 2651–2665.CrossRefGoogle Scholar
  40. Woodward, J. C., M. G. Macklin & D. Welsby, 2001. The Holocene fluvial sedimentary record and alluvial geoarchaeology in the Nile Valley of northern Sudan. In D. R. Maddy, M. G. Macklin & J. C. Woodward (eds), River Basin Sediment Systems: Archives of Environmental Change. Balkema, Rotterdam, pp. 327–355.Google Scholar
  41. Woodward, J. C., M. G. Macklin, M. D. Krom & M. A. J. Williams, 2007. The Nile: Evolution, Quaternary river environments and material fluxes. In A. Gupta (ed), Large Rivers: Geomorphology and Management. Wiley, New York, pp. 261–292.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Martin A.J. Williams
    • 1
  • Michael R. Talbot
    • 2
  1. 1.Geographical & Environmental StudiesUniversity of AdelaideAdelaideAustralia
  2. 2.Geological InstituteBergen UniversityBergenNorway

Personalised recommendations