Modern Human Physiology with Respect to Evolutionary Adaptations that Relate to Diet in the Past

  • Staffan Lindeberg
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

This paper reviews evidence from human physiology as to which foods may have been typically consumed by the hominin ancestral lineage up to the advent of anatomically modern humans. Considerable evidence suggests that many common diseases can be prevented by hunter-gatherer diets. Apparently, human nutritional metabolism is not perfectly fine-tuned for recently introduced staple foods, such as cereals, dairy products, added salt, and refined fats and sugar. It is much more uncertain if human physiology can provide direct evidence of which animal and plant foods were regularly consumed during human evolution, and in what proportions. The requirements of ascorbic acid can easily be met by organ meats from large animals, as well as by plant foods. Vitamin B12 is absent in plant foods and must be supplied from meat, fish, shellfish, or insects, but the required amounts are apparently small.

Since iodized salt and dairy products were not available before the advent of agriculture, only those ancestors with highly regular access to fish or shellfish would be expected to have reached the currently recommended intake of iodine. However, there is insufficient data to suggest that humans, by way of natural selection, would have become completely dependent on marine food sources. Therefore, it is highly possible that human requirements for iodine are currently increased by some dietary factors. These theoretically include goitro-gens in certain roots, vegetables, beans, and seeds. The notion that humans are strictly dependent on marine foods to meet requirements of long-chain omega-3 fatty acids still awaits solid evidence.

Shifting the focus from general human characteristics to ethnic differences, persistent lactase activity in adulthood is obviously not the only characteristic to have emerged under nutritional selection pressure. Other examples are a relative resistance against diseases of affluence in northern Europeans and a relatively low prevalence of gluten intolerance in populations with a long history of wheat consumption.

In conclusion, humans are well adapted for lean meat, fish, insects and highly diverse plant foods without being clearly dependent on any particular proportions of plants versus meat.


Human physiology evolutionary medicine nutrition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abate, N., Chandalia, M., 2001. Ethnicity and type 2 diabetes: focus on Asian Indians. Journal of Diabetes and Its Complications 15(6), 320–327.Google Scholar
  2. Adam-Perrot, A., Clifton, P., Brouns, F., 2006. Low-carbohydrate diets: nutritional and physiological aspects. Obesity Reviews 7(1), 49–58.Google Scholar
  3. Adams, M.R., Golden, D.L., Anthony, M.S., Register, T.C., Williams, J.K., 2002. The inhibitory effect of soy protein isolate on atherosclerosis in mice does not require the presence of LDL receptors or alteration of plasma lipoproteins. Journal of Nutrition 132(1), 43–49.Google Scholar
  4. Allen, J.S., Cheer, S.M., 1996. The non-thrifty genotype. Current Anthropology 37, 831–842.Google Scholar
  5. Anthony, M.S., Clarkson, T.B., Williams, J.K., 1998. Effects of soy isoflavones on atherosclerosis: potential mechanisms. American Journal of Clinical Nutrition 68(6 Suppl), 1390S–1393S.Google Scholar
  6. Appel, L.J., Sacks, F.M., Carey, V.J., Obarzanek, E., Swain, J.F., Miller 3rd, E.R., Conlin, P.R., Erlinger, T.P., Rosner, B.A., Laranjo, N.M., Charleston, J., McCarron, P., Bishop, L.M., 2005. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. Journal of the American Medical Association 294(19), 2455–2464.Google Scholar
  7. Araneta, M.R., Wingard, D.L., Barrett-Connor, E., 2002. Type 2 diabetes and metabolic syndrome in Filipina-American women: a high-risk nonobese population. Diabetes Care 25(3), 494–499.Google Scholar
  8. Arjmandi, B.H., Khalil, D.A., Hollis, B.W., 2002. Soy protein: its effects on intestinal calcium transport, serum vitamin D, and insulin-like growth factor-I in ovariectomized rats. Calcified Tissue International 70(6), 483–487.Google Scholar
  9. Armour, J.C., Perea, R.L.C., Buchan, W.C., Grant, G., 1998. Protease inhibitors and lectins in soya beans and effects of aqueous heat-treatment. Journal of the Science of Food and Agriculture 78, 225–231.Google Scholar
  10. Ascencio, C., Torres, N., Isoard-Acosta, F., Gomez-Perez, F.J., Hernandez-Pando, R., Tovar, A.R., 2004. Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. Journal of Nutrition 134(3), 522–529.Google Scholar
  11. Aziz, A., Anderson, G.H., 2002. Exendin-4, a GLP-1 receptor agonist, modulates the effect of macronutrients on food intake by rats. Journal of Nutrition 132(5), 990–995.Google Scholar
  12. Barbeau, W.E., Novascone, M.A., Elgert, K.D., 1997. Is celiac disease due to molecular mimicry between gliadin peptide-HLA class II molecule-T cell interactions and those of some unidentified superantigen? Molecular Immunology 34(7), 535–541.Google Scholar
  13. Beresford, S.A., Johnson, K.C., Ritenbaugh, C., Lasser, N.L., Snetselaar, L.G., Black, H.R., Anderson, G.L., Assaf, A.R., Bassford, T., Bowen, D., Brunner, R.L., Brzyski, R.G., Caan, B., Chlebowski, R.T., Gass, M., Harrigan, R.C., Hays, J., Heber, D., Heiss, G., Hendrix, S.L., Howard, B.V., Hsia, J., Hubbell, F.A., Jackson, R.D., Kotchen, J.M., Kuller, L.H., LaCroix, A.Z., Lane, D.S., Langer, R.D., Lewis, C.E., Manson, J.E., Margolis, K.L., Mossavar-Rahmani, Y., Ockene, J.K., Parker, L.M., Perri, M.G., Phillips, L., Prentice, R.L., Robbins, J., Rossouw, J.E., Sarto, G.E., Stefanick, M.L., Van Horn, L., Vitolins, M.Z., Wactawski-Wende, J., Wallace, R.B., Whitlock, E., 2006. Low-fat dietary pattern and risk of colorectal cancer: the women's health initiative randomized controlled dietary modification trial. Journal of the American Medical Association 295(6), 643–654.Google Scholar
  14. Berg, J.M., Tymoczko, J.L., Stryer, L., Stryer, L., 2002. Biochemistry. W.H. Freeman, New York.Google Scholar
  15. Bersaglieri, T., Sabeti, P.C., Patterson, N., Vanderploeg, T., Schaffner, S.F., Drake, J.A, Rhodes, M., Reich, D.E., Hirschhorn, J.N., 2004. Genetic signatures of strong recent positive selection at the lactase gene. American Journal of Human Genetics 74(6), 1111–1120.Google Scholar
  16. Bjelakovic, G., Nikolova, D., Simonetti, R.G., Gluud, C., 2004. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet 364(9441), 1219–1228.Google Scholar
  17. Brand Miller, J.C., Colagiuri, S., 1994. The carnivore connection: dietary carbohydrate in the evolution of NIDDM. Diabetologia 37. 1280–1286.Google Scholar
  18. Brand Miller, J.C., Holt, S.H., Pawlak, D.B., McMillan, J., 2002. Glycemic index and obesity. American Journal of Clinical Nutrition 76(1), 281S–285S.Google Scholar
  19. Bravata, D.M., Sanders, L., Huang, J., Krumholz, H.M., Olkin, I., Gardner, C.D., Bravata, D.M., 2003. Efficacy and safety of low-carbohydrate diets: a systematic review. Journal of the American Medical Association 289(14), 1837–1850.Google Scholar
  20. Brune, M., Rossander, L., Hallberg, L., 1989. Iron absorption: no intestinal adaptation to a high-phytate diet. American Journal of Clinical Nutrition 49(3), 542–545.Google Scholar
  21. Burr, M.L., Fehily, A.M., Gilbert, J.F., Rogers, S., Holliday, R.M., Sweetnam, P.M., Elwood, P.C., Deadman, N.M., 1989. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 2(8666), 757–761.Google Scholar
  22. Carmel, R., 1997. Cobalamin, the stomach, and aging. American Journal of Clinical Nutrition 66(4), 750–759.Google Scholar
  23. Cheryan, M., 1980. Phytic acid interactions in food systems. Critical Reviews in Food Science and Nutrition 13(4), 297–335.Google Scholar
  24. Chiang, J.Y., Kimmel, R., Stroup, D., 2001. Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha). Gene 262(1–2), 257–265.Google Scholar
  25. Cordain, L., 1999. Cereal grains: humanity's double-edged sword. World Review of Nutrition and Dietetics 84, 19–73.Google Scholar
  26. Cordain, L., 2006. Saturated fat consumption in ancestral human diets: implications for contemporary intakes. In: Meskin, M.S., Bidlack, W.R., Randolph, R.K. (Eds.), Phytochemicals: Nutrient-Gene Interactions. Taylor & Francis, London, pp. 115–126.Google Scholar
  27. Cordain, L., Gotshall, R.W., Eaton, S.B., Eaton, S.B. 3rd, 1998. Physical activity, energy expenditure and fitness: an evolutionary perspective. International Journal of Sports Medicine 19(5), 328–335.Google Scholar
  28. Cordain, L., Miller, J.B., Eaton, S.B., Mann, N., Holt, S.H., Speth, J.D., 2000a. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. American Journal of Clinical Nutrition 71(3), 682–692.Google Scholar
  29. Cordain, L., Toohey, L., Smith, M.J., Hickey, M.S., 2000b. Modulation of immune function by dietary lectins in rheumatoid arthritis. British Journal of Nutrition 83(3), 207–217.Google Scholar
  30. Cordain, L., Eaton, S.B., Brand Millers, J., Lindebergs, S., Jensen, C., 2002a. An evolutionary analysis of the aetiology and pathogenesis of juvenile-onset myopia. Acta Ophthalmologica Scandinavica 80(2), 125–135.Google Scholar
  31. Cordain, L., Lindeberg, S., Hurtado, M., Hill, K., Eaton, S.B., Brand Miller, J., 2002b. Acne vulgaris: a disease of civilization. Archives of Dermatology 138(12), 1584–1590.Google Scholar
  32. Cordain, L., Eades, M.R., Eades, M.D., 2003. Hyperinsulinemic diseases of civilization: more than just Syndrome X. Comparative Biochemistry and Physiology — Part A: Molecular and Integrative Physiology 136(1), 95–112.Google Scholar
  33. Cordain, L., Eaton, S.B., Sebastian, A., Mann, N., Lindeberg, S., Watkins, B.A., O'Keefe, J.H., Brand-Miller, J., 2005. Origins and evolution of the Western diet: health implications for the 21st century. American Journal of Clinical Nutrition 81(2), 341–354.Google Scholar
  34. Corthesy-Theulaz, I., den Dunnen, J.T., Ferre, P., Geurts, J.M., Muller, M., van Belzen, N., van Ommen, B., 2005. Nutrigenomics: the impact of biomics technology on nutrition research. Annals of Nutrition and Metabolism 49(6), 355–365.Google Scholar
  35. Cruickshank, J.K., Mbanya, J.C., Wilks, R., Balkau, B., McFarlane-Anderson, N., Forrester, T., 1999. Sick genes, sick individuals or sick populations with chronic disease? An international example from the emergence of diabetes and high blood pressure in African—origin populations. e—Lancet LLAN.ERA.1057.Google Scholar
  36. Cuatrecasas, P., 1973. Interaction of wheat germ agglutinin and conca-navalin A with isolated fat cells. Biochemistry 12(7), 1312–1323.Google Scholar
  37. Cuatrecasas, P., Tell, G.P., 1973. Insulin-like activity of concanavalin A and wheat germ agglutinin — direct interactions with insulin receptors. Proceedings of the National Academy of Sciences of the United States of America 70(2), 485–489.Google Scholar
  38. Cunnane, S.C., Crawford, M.A., 2003. Survival of the fattest: fat babies were the key to evolution of the large human brain. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 136(1), 17–26.Google Scholar
  39. Cyrus, T., Tang, L.X., Rokach, J., FitzGerald, G.A., Pratico, D., 2001. Lipid peroxidation and platelet activation in murine atherosclerosis. Circulation 104(16), 1940–1945.Google Scholar
  40. Damasceno, N.R., Gidlund, M.A., Goto, H., Dias, C.T., Okawabata, F.S., Abdalla, D.S., 2001. Casein and soy protein isolate in experimental atherosclerosis: influence on hyperlipidemia and lipopro-tein oxidation. Annals of Nutrition and Metabolism 45(1), 38–46.Google Scholar
  41. Davis, H.R., Glagov, S., 1986. Lectin binding to distinguish cell types in fixed atherosclerotic arteries. Atherosclerosis 61(3), 193–203.Google Scholar
  42. de Lorgeril, M., Salen, P., Martin, J.L., Monjaud, I., Delaye, J., Mamelle, N., 1999. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 99(6), 779–785.Google Scholar
  43. Debongnie, J.C., Newcomer, A.D., McGill, D.B., Phillips, S.F., 1979. Absorption of nutrients in lactase deficiency. Digestive Diseases and Sciences 24(3), 225–231.Google Scholar
  44. Delange, F., Van Onderbergen, A., Shabana, W., Vandemeulebroucke, E., Vertongen, F., Gnat, D., Dramaix, M., 2000. Silent iodine prophylaxis in Western Europe only partly corrects iodine deficiency; the case of Belgium. European Journal of Endocrinology 143(2), 189–196.Google Scholar
  45. Diez, M., Nguyen, P., Jeusette, I., Devois, C., Istasse, L., Biourge, V., 2002. Weight loss in obese dogs: evaluation of a high-protein, low-carbohydrate diet. Journal of Nutrition 132(6 Suppl 2), 1685S–1687S.Google Scholar
  46. Dobson, J.E., 1998. The iodine factor in health and evolution. Geographical Review 88(1), 1–28.Google Scholar
  47. Doerge, D.R., Sheehan, D.M., 2002. Goitrogenic and estrogenic activity of soy isoflavones. Environmental Health Perspectives 110(Suppl 3), 349–353.Google Scholar
  48. Dolfini, E., Elli, L., Ferrero, S., Braidotti, P., Roncoroni, L., Dasdia, T., Falini, M.L., Forlani, F., Bardella, M.T., 2003. Bread wheat gliadin cytotoxicity: a new three-dimensional cell model. Scandinavian Journal of Clinical and Laboratory Investigation 63(2), 135–141.Google Scholar
  49. Dyerberg, J., 1989. Coronary heart disease in Greenland Inuit: a paradox. Implications for western diet patterns. Arctic Medical Research 48(2), 47–54.Google Scholar
  50. Dzhangaliev, A.D., Salova, T.N., Turekhanova, P.M., 2003. The wild fruit and nut plants of Kazakhstan. Horticultural Reviews 29, 305–371.Google Scholar
  51. Eaton, S., Konner, M., 1985. Paleolithic nutrition. A consideration of its nature and current implications. New England Journal of Medicine 312, 283–289.Google Scholar
  52. Elliott, R.B., Harris, D.P., Hill, J.P., Bibby, N.J., Wasmuth, H.E., 1999. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 42(3), 292–296.Google Scholar
  53. Elliott, S.S., Keim, N.L, Stern, J.S., Teff, K., Havel, P.J., 2002. Fructose, weight gain, and the insulin resistance syndrome. American Journal of Clinical Nutrition 76(5), 911–922.Google Scholar
  54. Engelmann, M.D., Sandstrom, B., Michaelsen, K.F., 1998. Meat intake and iron status in late infancy: an intervention study. Journal of Pediatric Gastroenterology and Nutrition 26(1), 26–33.Google Scholar
  55. Ercan, N., Nuttall, F.Q., Gannon, M.C., Redmon, J.B., Sheridan, K.J., 1993. Effects of glucose, galactose, and lactose ingestion on the plasma glucose and insulin response in persons with non-insulin-dependent diabetes mellitus. Metabolism 42(12), 1560–1567.Google Scholar
  56. Fairweather, T.S., Wright, A.J., 1990. The effects of sugar-beet fibre and wheat bran on iron and zinc absorption in rats. British Journal of Nutrition 64(2), 547–552.Google Scholar
  57. Feldhahn, J.R., Rand, J.S., Martin, G., 1999. Insulin sensitivity in normal and diabetic cats. Journal of Feline Medicine and Surgery 1(2), 107–115.Google Scholar
  58. Fiennes, R.N., 1965. Atherosclerosis in wild animals. In: Roberts, J., Straus, R., (Eds.), Comparative Atherosclerosis. The Morphology of Spontaneous and Induced Atherosclerotic Lesions in Animals and Its Relation to Human Disease. Harper & Row, New York, pp. 113–126.Google Scholar
  59. Gaitan, E., 1990. Goitrogens in food and water. Annual Review of Nutrition 10, 21–39.Google Scholar
  60. Gannon, M.C., Nuttall, F.Q., Krezowski, P.A., Billington, C.J., Parker, S., 1986. The serum insulin and plasma glucose responses to milk and fruit products in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 29(11), 784–791.Google Scholar
  61. Garrow, J.S., James, W.P.T., (Eds.), 2000. Human Nutrition and Dietetics. Churchill Livingstone, Edinburgh.Google Scholar
  62. Gleadow, R.M., Woodrow, I.E., 2002. Constraints on effectiveness of cyanogenic glycosides in herbivore defense. Journal of Chemical Ecology 28(7), 1301–1313.Google Scholar
  63. Gorman, C., 2006. Does my diet fit my genes? The new science of nutrigenomics has some answers. It explains why fat and caffeine are worse for some than others. Time 167(24), 69–70.Google Scholar
  64. Gower, B.A., 1999. Syndrome X in children: Influence of ethnicity and visceral fat. American Journal of Human Biology 11(2), 249–257.Google Scholar
  65. Gräslund, B., 2005. Early humans and their world. Routledge, London.Google Scholar
  66. Gunton, J.E., Hitchman, R., McElduff, A., 2001. Effects of ethnicity on glucose tolerance, insulin resistance and beta cell function in 223 women with an abnormal glucose challenge test during pregnancy. Australian and New Zealand Journal of Obstetrics and Gynaecology 41(2), 182–186.Google Scholar
  67. Hakkak, R., Korourian, S., Ronis, M.J., Johnston, J.M., Badger, T.M., 2001. Dietary whey protein protects against azoxymeth-ane-induced colon tumors in male rats. Cancer Epidemiology Biomarkers and Prevention 10(5), 555–558.Google Scholar
  68. Hallberg, L., Brune, M., Rossander, L., 1989. Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. American Journal of Clinical Nutrition 49(1), 140–144.Google Scholar
  69. Hallberg, L., Sandström, B., Ralph, A., Arthur, J., 2000. Diseases of the heart and circulation: the role of dietary factors in aetiology and management. In: Garrow, J.S., James, W.P.T. (Eds.), Human Nutrition and Dietetics. Churchill Livingstone, Edinburg, pp. 177–209.Google Scholar
  70. Hamberg, O., Nielsen, K., Vilstrup, H., 1992. Effects of an increase in protein intake on hepatic efficacy for urea synthesis in healthy subjects and in patients with cirrhosis. Journal of Hepatology 14(2–3), 237–243.Google Scholar
  71. Hansson, G.K., 2001. Immune mechanisms in atherosclerosis. Arteriosclerosis, Thrombosis and Vascular Biology 21(12), 1876–1890.Google Scholar
  72. Harrison, E., Adjei, A., Ameho, C., Yamamoto, S., Kono, S., 1998. The effect of soybean protein on bone loss in a rat model of postmenopausal osteoporosis. Journal of Nutritional Science and Vitaminology (Tokyo) 44(2), 257–268.Google Scholar
  73. Hawrylewicz, E.J., Huang, H.H., Blair, W.H., 1991. Dietary soybean isolate and methionine supplementation affect mammary tumor progression in rats. Journal of Nutrition 121(10), 1693–1698.Google Scholar
  74. Hazell, T., Johnson, I.T., 1987. In vitro estimation of iron availability from a range of plant foods: influence of phytate, ascorbate and citrate. British Journal of Nutrition 57(2), 223–233.Google Scholar
  75. Hedo, J.A., Harrison, L.C., Roth, J., 1981. Binding of insulin receptors to lectins: evidence for common carbohydrate determinants on several membrane receptors. Biochemistry 20(12), 3385–3393.Google Scholar
  76. Henschen, F., 1966. The history and geography of diseases. Delacorte, New York.Google Scholar
  77. Herbert, V., 1988. Vitamin B-12: plant sources, requirements, and assay. American Journal of Clinical Nutrition 48(3 Suppl), 852–858.Google Scholar
  78. Hetzel, B.S., 1994. Iodine deficiency and fetal brain damage. New England Journal of Medicine 331(26), 1770–1771.Google Scholar
  79. Hokin, B.D., Butler, T., 1999. Cyanocobalamin (vitamin B-12) status in Seventh-day Adventist ministers in Australia. American Journal of Clinical Nutrition 70(3 Suppl), 576S–578S.Google Scholar
  80. Hooper, L., Summerbell, C.D., Higgins, J.P., Thompson, R.L., Capps, N.E., Smith, G.D., Riemersma, R.A., Ebrahim, S., 2001. Dietary fat intake and prevention of cardiovascular disease: systematic review. British Medical Journal 322(7289), 757–763.Google Scholar
  81. Hooper, L., Thompson, R.L., Harrison, R.A., Summerbell, C.D., Moore, H., Worthington, H.V., Durrington, P.N., Ness, A.R., Capps, N.E., Davey Smith, G., Riemersma, R.A., Ebrahim, S.B., 2004. Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database of Systematic Reviews (4), CD003177.Google Scholar
  82. Howard, B.V., Van Horn, L., Hsia, J., Manson, J.E., Stefanick, M.L., Wassertheil-Smoller, S., Kuller, L.H., LaCroix, A.Z., Langer, R.D., Lasser, N.L., Lewis, C.E., Limacher, M.C., Margolis, K.L., Mysiw, W.J., Ockene, J.K., Parker, L.M., Perri, M.G., Phillips, L., Prentice, R.L., Robbins, J., Rossouw, J.E., Sarto, G.E., Schatz, I.J., Snetselaar, L.G., Stevens, V.J., Tinker, L.F., Trevisan, M., Vitolins, M.Z., Anderson, G.L., Assaf, A.R., Bassford, T., Beresford, S.A., Black, H.R., Brunner, R.L., Brzyski, R.G., Caan, B., Chlebowski, R.T., Gass, M., Granek, I., Greenland, P., Hays, J., Heber, D., Heiss, G., Hendrix, S.L., Hubbell, F.A., Johnson, K.C., Kotchen, J.M., 2006. Low-fat dietary pattern and risk of cardiovascular disease: the women's health initiative randomized controlled dietary modification trial. Journal of the American Medical Association 295(6), 655–666.Google Scholar
  83. Hugi, D., Tappy, L., Sauerwein, R.M., Bruckmaier, R.M., Blum, J.W., 1998. Insulin-dependent glucose utilization in intensively milk-fed veal calves is modulated by supplementing lactose in an age-depenedent manner. Journal of Nutrition 128, 1023–1030.Google Scholar
  84. Hunt, J.R., 2003. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. American Journal of Clinical Nutrition 78(3 Suppl), 633S–639S.Google Scholar
  85. Hurrell, R.F., Reddy, M.B., Juillerat, M., Cook, J.D., 2006. Meat protein fractions enhance nonheme iron absorption in humans. Journal of Nutrition 136(11), 2808–2812.Google Scholar
  86. Iqbal, T.H., Lewis, K.O., Cooper, B.T., 1994. Phytase activity in the human and rat small intestine. Gut 35(9), 1233–1236.Google Scholar
  87. Jackson, R.D., LaCroix, A.Z., Gasss, M., Wallace, R.B., Robbins, J., Lewis, C.E., Bassford, T., Beresford, S.A., Black, H.R., Blanchette, P., Bonds, D.E., Brunner, R.L., Brzyski, R.G, Caan, B., Cauley, J.A., Chlebowski, R.T., Cummings, S.R., Granek, I., Hays, J., Heiss, G., Hendrix, S.L., Howard, B.V., Hsia, J., Hubbell, F.A., Johnson, K.C., Judd, H., Kotchen, J.M., Kuller, L.H., Langer, R.D., Lasser, N.L., Limacher, M.C., Ludlam, S., Manson, J.E., Margolis, K.L., McGowan, J., Ockene, J.K., O'Sullivan, M.J., Phillips, L., Prentice, R.L., Sarto, G.E., Stefanick, M.L., Van Horn, L., Wactawski-Wende, J., Whitlock, E., Anderson, G.L., Assaf, A.R., Barad, D., 2006. Calcium plus vitamin D supplementation and the risk of fractures. New England Journal of Medicine 354(7), 669–683.Google Scholar
  88. Jenkins, D.J., Kendall, C.W., Jackson, C.J., Connelly, P.W., Parker, T., Faulkner, D., Vidgen, E., Cunnane, S.C., Leiter, L.A., Josse, R.G., 2002. Effects of high- and low-isoflavone soyfoods on blood lip-ids, oxidized LDL, homocysteine, and blood pressure in hyperli-pidemic men and women. American Journal of Clinical Nutrition 76(2), 365–372.Google Scholar
  89. Jolly, C.J., 1970. A new model of hominid differentiation based on a baboon analogy. Man 5, 5–26.Google Scholar
  90. Jolly, C.J., 2001. A proper study for mankind: Analogies from the Papionin monkeys and their implications for human evolution. American Journal of Physical Anthropology Supplement 33, 177–204.Google Scholar
  91. Jönsson, T., Olsson, S., Ahrén, B., Bøg-Hansen, T.C., Dole, A., Lindeberg, S., 2005. Agrarian diet and sieases of affluence — Do evolutionary novel lectins cause leptin resistance? BMC Endocrine Disorders 5(10), doi:10.1186/1472-6823-5-10.Google Scholar
  92. Kagami, H., Uryu, K., Okamoto, K., Sakai, H., Kaneda, T., Sakanaka, M., 1991. Differential lectin binding on walls of thoraco-cervical blood vessels and lymphatics in rats. Okajimas Folia Anatomica Japonica 68(2–3), 161–170.Google Scholar
  93. Kalhan, R., Puthawala, K., Agarwal, S., Amini, S.B., Kalhan, S.C., 2001. Altered lipid profile, leptin, insulin, and anthropometry in offspring of South Asian immigrants in the United States. Metabolism 50(10), 1197–1202.Google Scholar
  94. Kanis, J.A., Johansson, H., Oden, A., De Laet, C., Johnell, O., Eisman, J.A., Mc Closkey, E., Mellstrom, D., Pols, H., Reeve, J., Silman, A., Tenenhouse, A., 2005. A meta-analysis of milk intake and fracture risk: low utility for case finding. Osteoporosis International 16(7), 799–804.Google Scholar
  95. Kasper, D.L., Braunwald, E., Fauci, A.S., Hauser, S.L., Longo, D.L., Jameson, J.L. (Eds.), 2005. Harrison's Principles of Internal Medicine. McGraw-Hill, New York.Google Scholar
  96. Kennedy, R.L., Chokkalingam, K., Farshchi, H.R., 2005. Nutrition in patients with Type 2 diabetes: are low-carbohydrate diets effective, safe or desirable? Diabetic Medicine 22(7), 821–832.Google Scholar
  97. Kerstetter, J.E., Svastisalee, C.M., Caseria, D.M., Mitnick, M.E., Insogna, K.L., 2000. A threshold for low-protein-diet-induced elevations in parathyroid hormone. American Journal of Clinical Nutrition 72(1), 168–173.Google Scholar
  98. King, H., Rewers, M., 1993. Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. WHO Ad Hoc Diabetes Reporting Group. Diabetes Care 16(1), 157–177.Google Scholar
  99. Ko, I.W.P., Corlett, R.T., Xu, R.-J., 1998. Sugar composition of wild fruits in Hong Kong, China. Journal of Tropical Ecology 14, 381–387.Google Scholar
  100. Koebnick, C., Hoffmann, I., Dagnelie, P.C., Heins, U.A., Wickramasinghe, S.N., Ratnayaka, I.D., Gruendel, S., Lindemans, J., Leitzmann, C., 2004. Long-term ovo-lacto vegetarian diet impairs vitamin B-12 status in pregnant women. Journal of Nutrition 134(12), 3319–3326.Google Scholar
  101. Kopp, W., 2004. Nutrition, evolution and thyroid hormone levels — a link to iodine deficiency disorders? Medical Hypotheses 62(6), 871–875.Google Scholar
  102. Kritchevsky, D., 1995. Dietary protein, cholesterol and atherosclerosis: a review of the early history. Journal of Nutrition 125(3 Suppl), 589S–593S.Google Scholar
  103. Kritchevsky, D., Tepper, S.A., Klurfeld, D.M., 1998. Lectin may contribute to the atherogenicity of peanut oil. Lipids 33(8), 821–823.Google Scholar
  104. Laffitte, B.A., Joseph, S.B., Walczak, R., Pei, L., Wilpitz, D.C., Collins, J.L., Tontonoz, P., 2001. Autoregulation of the human liver X receptor alpha promoter. Molecular Cell Biology 21(22), 7558–7568.Google Scholar
  105. Lanou, A.J., Berkow, S.E., Barnard, N.D., 2005. Calcium, dairy products, and bone health in children and young adults: a reevaluation of the evidence. Pediatrics 115(3), 736–743.Google Scholar
  106. Lau, E.M., Woo, J., 1998. Nutrition and osteoporosis. Current Opinion in Rheumatology 10(4), 368–372.Google Scholar
  107. Laudet, V., Gronemeyer, H., 2002. The Nuclear Receptor Facts Book. Academic Press, New York.Google Scholar
  108. Lavigne, C., Tremblay, F., Asselin, G., Jacques, H., Marette, A., 2001. Prevention of skeletal muscle insulin resistance by dietary cod protein in high fat-fed rats. American Journal of Physiology Endocrinology and Metabolism 281(1), E62–E71.Google Scholar
  109. Liener, I.E., 1986. Nutritional significance of lectins in the diet. In: Liener, I.E., Sharon, N., Goldstein, I.J. (Eds.), The Lectins: Properties, Functions and Applications in Biology and Medicine. Academic Press, New York, pp. 527–552.Google Scholar
  110. Lightowler, H.J., Davies, G.J., 1998. Iodine intake and iodine deficiency in vegans as assessed by the duplicate-portion technique and urinary iodine excretion. British Journal of Nutrition 80(6), 529–535.Google Scholar
  111. Lindeberg, S., 1994. Apparent absence of cerebrocardiovascular disease in Melanesians. Risk factors and nutritional considerations — the Kitava Study. M.D.Ph.D. Dissertation, Lund University.Google Scholar
  112. Lindeberg, S., 1998. [Cereals, salt and rickets in historical perspective]. Svensk medicinhistorisk tidskrift 2(1), 79–89.Google Scholar
  113. Lindeberg, S., 2005. Who wants to be normal? European Heart Journal 26(24), 2605–2606.Google Scholar
  114. Lindeberg, S., Lundh, B., 1993. Apparent absence of stroke and ischaemic heart disease in a traditional Melanesian island: a clinical study in Kitava. Journal of Internal Medicine 233(3), 269–275.Google Scholar
  115. Lindeberg, S., Vessby, B., 1995. Fatty acid composition of cholesterol esters and serum tocopherols in Melanesians apparently free from cardiovascular disease — the Kitava study. Nutrition, Metabolism and Cardiovascular Diseases 5, 45–53.Google Scholar
  116. Lindeberg, S., Berntorp, E., Nilsson-Ehle, P., Terent, A., Vessby, B., 1997. Age relations of cardiovascular risk factors in a traditional Melanesian society: the Kitava Study. American Journal of Clinical Nutrition 66(4), 845–852.Google Scholar
  117. Lindeberg, S., Eliasson, M., Lindahl, B., Ahrén, B., 1999. Low serum insulin in traditional Pacific Islanders-the Kitava Study. Metabolism 48(10), 1216–1219.Google Scholar
  118. Lindeberg, S., Soderberg, S., Ahren, B., Olsson, T., 2001. Large differences in serum leptin levels between nonwesternized and westernized populations: the Kitava study. Journal of Internal Medicine 249(6), 553–558.Google Scholar
  119. Lindeberg, S., Cordain, L., Eaton, S.B., 2003. Biological and clinical potential of a palaeolithic diet. Journal of Nutritional and Environmental Medicine 13(3), 1–12.Google Scholar
  120. Lindeberg, S., Jonsson, T., Granfeldt, Y., Borgstrand, E., Soffman, J., Sjostrom, K., Ahren, B., 2007. A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia 50, 1795–807.Google Scholar
  121. Livingston, J.N., Purvis, B.J., 1981. The effects of wheat germ agglutinin on the adipocyte insulin receptor. Biochimica et Biophysica Acta 678(2), 194–201.Google Scholar
  122. Lothrop, C., Harrison, G.J., Schultz, D., Utteridge, T., 1986. Miscellaneous diseases. In: Harrison, G.J., Harrison, L.R. (Eds.), Clinical Avian Medicine and Surgery. Saunders, Philadelphia, pp. 525–536.Google Scholar
  123. Lucas, P.W., Ang, K.Y., Sui, Z., Agrawal, K.R., Prinz, J.F., Dominy, N.J., 2006. A brief review of the recent evolution of the human mouth in physiological and nutritional contexts. Physiology and Behavior 89(1), 36–38.Google Scholar
  124. Maddox, D.A., Alavi, F.K., Silbernick, E.M., Zawada, E.T., 2002. Protective effects of a soy diet in preventing obesity-linked renal disease. Kidney International 61(1), 96–104.Google Scholar
  125. Maldonado, E.N., Casanave, E.B., Aveldano, M.I., 2002. Major plasma lipids and fatty acids in four HDL mammals. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 132(2), 297–303.Google Scholar
  126. McLachlan, C.N., 2001. Beta-casein A1, ischaemic heart disease mortality, and other illnesses. Medical Hypotheses 56(2), 262–272.Google Scholar
  127. Mellanby, E., 1950. A story of nutrition research. Williams & Wilkins, Baltimore.Google Scholar
  128. Miller, D.D., 1989. Calcium in the diet: food sources, recommended intakes, and nutritional bioavailability. Advances in Food and Nutrition Research 33, 103–156.Google Scholar
  129. Miller, E.R. 3rd, Pastor-Barriuso, R., Dalal, D., Riemersma, R.A., Appel, L.J., Guallar, E., 2005. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Annals of Internal Medicine 142(1), 37–46.Google Scholar
  130. Milton, K., 1999. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition 15(6), 488–498.Google Scholar
  131. Milton, K., 2003. The critical role played by animal source foods in human (Homo) evolution. Journal of Nutrition 133(11 Suppl 2), 3886S–3892S.Google Scholar
  132. Mordes, J.P., Rossini, A.A., 1981. Animal models of diabetes. American Journal of Medicine 70(2), 353–360.Google Scholar
  133. Nagaev, I., Smith, U., 2001. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochemical and Biophysical Research Communications 285(2), 561–564.Google Scholar
  134. National Food Administration., 1986. Food composition tables. National Food Administration, Uppsala, Sweden.Google Scholar
  135. Neel, J.V., 1962. Diabetes mellitus: a thrifty genotype rendered detrimental by “progress”? American Journal of Human Genetics 14, 353–362.Google Scholar
  136. Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N., Yagi, K., 1994. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. Journal of Biological Chemistry 269(18), 13685–13688.Google Scholar
  137. Nordin, B.E.C., Need, A.G., Morris, H.A., Horowitz, M., Chatterton, B.E., Sedgwick, A.W., 1995. Bad habits and bad bones. In: Burckhardt, P., Heaney, R.P. (Eds.), Nutritional Aspects Of Osteoporosis ′94. Ares-Serono Symposia 7, Rome, pp. 1–25.Google Scholar
  138. Nuttall, F.Q., Schweim, K., Hoover, H., Gannon, M.C., 2006. Metabolic effect of a LoBAG30 diet in men with type 2 diabetes. American Journal of Physiology Endocrinology and Metabolism 291(4), E786–791.Google Scholar
  139. O'Dea, K., 1984. Marked improvement in carbohydrate and lipid metabolism in diabetic Australian aborigines after temporary reversion to traditional lifestyle. Diabetes 33(6), 596–603.Google Scholar
  140. Ohmori, T., Yatomi, Y., Wu, Y., Osada, M., Satoh, K., Ozaki, Y., 2001. Wheat germ agglutinin-induced platelet activation via platelet endothelial cell adhesion molecule-1: involvement of rapid phospholipase C gamma 2 activation by Src family kinases. Biochemistry 40(43), 12992–13001.Google Scholar
  141. Palmquist, D.L., Doppenberg, J., Roehrig, K.L., Kinsey, D.J., 1992. Glucose and insulin metabolism in ruminating and veal calves fed high and low fat diets. Domestic Animal Endocrinology 9, 233–241.Google Scholar
  142. Park, Y.K., Yetley, E.A., 1993. Intakes and food sources of fructose in the United States. American Journal of Clinical Nutrition 58 (5 Suppl), 737S–747S.Google Scholar
  143. Perry, G.H., Dominy, N.J., Claw, K.G., Lee, A.S., Fiegler, H., Redon, R., Werner, J., Villanea, F.A., Mountain, J.L., Misra, R., Carter, N.P., Lee, C., Stone, A.C., 2007. Diet and the evolution of human amylase gene copy number variation. Nature Genetics 39(10), 1256–1260.Google Scholar
  144. Potter, S.M., Baum, J.A., Teng, H., Stillman, R.J., Shay, N.F., Erdman, Jr., J.W., 1998. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. American Journal of Clinical Nutrition 68(6 Suppl), 1375S–1379S.Google Scholar
  145. Poulter, N.R., Khaw, K.T., Sever, P.S., 1988. Higher blood pressures of urban migrants from an African low-blood pressure population are not due to selective migration. American Journal of Hypertension 1(3 Pt 3), 143S–145S.Google Scholar
  146. Proos, L.A., Hofvander, Y., Tuvemo, T., 1991. Menarcheal age and growth pattern of Indian girls adopted in Sweden. I. Menarcheal age. Acta Paediatrica Scandinavica 80(8–9), 852–858.Google Scholar
  147. Purrello, F., Burnham, D.B., Goldfine, I.D., 1983. Insulin receptor antiserum and plant lectins mimic the direct effects of insulin on nuclear envelope phosphorylation. Science 221(4609), 462–464.Google Scholar
  148. Pusztai, A., 1993. Dietary lectins are metabolic signals for the gut and modulate immune and hormone functions. European Journal of Clinical Nutrition 47(10), 691–699.Google Scholar
  149. Pusztai, A., Greer, F., Grant, G., 1989. Specific uptake of dietary lectins into the systemic circulation of rats. Biochemical Society Transactions 17, 481–482.Google Scholar
  150. Rasmussen, L.B., Ovesen, L., Bulow, I., Jorgensen, T., Knudsen, N., Laurberg, P., Perrild, H., 2002. Relations between various measures of iodine intake and thyroid volume, thyroid nodularity, and serum thyroglobulin. American Journal of Clinical Nutrition 76(5), 1069–1076.Google Scholar
  151. Ravnskov, U., 1998. The questionable role of saturated and polyun-saturated fatty acids in cardiovascular disease. Journal of Clinical Epidemiology 51(6), 443–460.Google Scholar
  152. Requejo, A.M., Navia, B., Ortega, R.M., Lopez-Sobaler, A.M., Quintas, E., Gaspar, M.J., Osorio, O., 1999. The age at which meat is first included in the diet affects the incidence of iron deficiency and ferropenic anaemia in a group of pre-school children from Madrid. International Journal for Vitamin and Nutrition Research 69(2), 127–131.Google Scholar
  153. Richards, M.P., 2002. A brief review of the archaeological evidence for Palaeolithic and Neolithic subsistence. European Journal of Clinical Nutrition 56(12), 1270–1279.Google Scholar
  154. Richards, M.P., Pettitt, P.B., Stiner, M.C., Trinkaus, E., 2001. Stable isotope evidence for increasing dietary breadth in the European mid-Upper Paleolithic. Proceedings of the National Academy of Sciences of the United States of America 98(11), 6528–6532.Google Scholar
  155. Rodin, D.A., Bano, G., Bland, J.M., Taylor, K., Nussey, S.S., 1998. Polycystic ovaries and associated metabolic abnormalities in Indian subcontinent Asian women. Clinical Endocrinology (Oxford) 49(1), 91–99.Google Scholar
  156. Roth, G.S., Ingram, D.K., Lane, M.A., 2001. Caloric restriction in primates and relevance to humans. Annals of the New York Academy of Sciences 928, 305–315.Google Scholar
  157. Samuelson, L.C., Phillips, R.S., Swanberg, L.J., 1996. Amylase gene structures in primates: retroposon insertions and promoter evolution. Molecular Biology and Evolution 13(6), 767–779.Google Scholar
  158. Schaefer, O., 1981. Eskimos. In: Trowell, H.C., Burkitt, D.P. (Eds.), Western Diseases: Their Emergence and Prevention. Edward Arnold, London, pp. 113–128.Google Scholar
  159. Sebastian, A., Frassetto, L.A., Sellmeyer, D.E., Merriam, R.L., Morris, Jr., R.C., 2002. Estimation of the net acid load of the diet of ancestral preagricultural Homo sapiens and their homi-nid ancestors. American Journal of Clinical Nutrition 76(6), 1308–1316.Google Scholar
  160. Shechter, Y., 1983. Bound lectins that mimic insulin produce persistent insulin-like activities. Endocrinology 113(6), 1921–1926.Google Scholar
  161. Shechter, Y., Sela, B.A., 1981. Insulin-like effects of wax bean agglu-tinin in rat adipocytes. Biochemical and Biophysical Research Communications 98(2), 367–373.Google Scholar
  162. Shils, M.E., Shike, M., 2006. Modern nutrition in health and disease. Lippincott Williams & Wilkins, Philadelphia.Google Scholar
  163. Simmoons, F.J., 1981. Celiac disease as a geographic problem. In: Walcher, N., Kretchmer, N. (Eds.), Food, Nutrition and Evolution. Masson, New York, pp. 179–199.Google Scholar
  164. Simoons, F.J., Johnson, J.D., Kretchmer, N., 1977. Perspective on milkdrinking and malabsorption of lactose. Pediatrics 59(1), 98–108.Google Scholar
  165. Sinnett, P.F., Whyte, H.M., 1973. Epidemiological studies in a highland population of New Guinea: environment, culture, and health status. Human Ecology 1(3), 245–277.Google Scholar
  166. Slavin, J.L., Martini, M.C., Jacobs, Jr., D.R., Marquart, L., 1999. Plausible mechanisms for the protectiveness of whole grains. American Journal of Clinical Nutrition 70(3 Suppl), 459S–463S.Google Scholar
  167. Stabler, S.P., Allen, R.H., 2004. Vitamin B12 deficiency as a worldwide problem. Annual Review of Nutrition 24, 299–326.Google Scholar
  168. Tejada, C., Strong, J.P., Montenegro, M.R., Restrepo, C., Solberg, L.A., 1968. Distribution of coronary and aortic atherosclerosis by geographic location, race, and sex. Laboratory Investigations 18(5), 509–526.Google Scholar
  169. Thorburn, A.W., Brand, J.C., Truswell, A.S., 1987. Slowly digested and absorbed carbohydrate in traditional bushfoods: a protective factor against diabetes? American Journal of Clinical Nutrition 45(1), 98–106.Google Scholar
  170. Thorsdottir, I., Birgisdottir, B.E., Johannsdottir, I.M., Harris, D.P., Hill, J., Steingrimsdottir, L., Thorsson, A.V., 2000. Different beta-casein fractions in Icelandic versus Scandinavian cow's milk may influence diabetogenicity of cow's milk in infancy and explain low incidence of insulin-dependent diabetes mellitus in Iceland. Pediatrics 106(4), 719–724.Google Scholar
  171. Trowell, H.C., Burkitt, D.P. (Eds.), 1981. Western Diseases: Their Emergence and Prevention. Harvard University Press, Cambridge.Google Scholar
  172. Truswell, A.S., 2002. Cereal grains and coronary heart disease. European Journal of Clinical Nutrition 56(1), 1–14.Google Scholar
  173. Truswell, A.S., Hansen, J.D.L., 1976. Medical research among the !Kung. In: Lee, R.B., DeVore, I. (Eds.), Kalahari Hunter-gatherers. Harvard University Press, Cambridge, pp. 166–195.Google Scholar
  174. Ungar, P., 2004. Dental topography and diets of Australopithecus afaren-sis and early Homo. Journal of Human Evolution 46(5), 605–622.Google Scholar
  175. Vacaresse, N., Vieira, O., Robbesyn, F., Jurgens, G., Salvayre, R., Negre-Salvayre, A., 2001. Phenolic antioxidants trolox and caffeic acid modulate the oxidized LDL- induced EGF-receptor activation. British Journal of Pharmacology 132(8), 1777–1788.Google Scholar
  176. Vanderjagt, D.J., Freiberger, C., Vu, H.T., Mounkaila, G., Glew, R.S., Glew, R.H., 2000. The trypsin inhibitor content of 61 wild edible plant foods of Niger. Plant Foods for Human Nutrition 55(4), 335–346.Google Scholar
  177. Vasankari, T.J., Vasankari, T.M., 2006. Effect of dietary fructose on lipid metabolism, body weight and glucose tolerance in humans. Scandinavian Journal of Food and Nutrition 50(2), 55–63.Google Scholar
  178. Voight, B.F., Kudaravalli, S., Wen, X., Pritchard, J.K., 2006. A map of recent positive selection in the human genome. PLoS Biology 4(3), e72.Google Scholar
  179. Wagner, J.D., Zhang, L., Greaves, K.A., Shadoan, M.K., Schwenke, D.C., 2000. Soy protein reduces the arterial low-density lipopro-tein (LDL) concentration and delivery of LDL cholesterol to the arteries of diabetic and nondiabetic male cynomolgus monkeys. Metabolism 49(9), 1188–1196.Google Scholar
  180. Wang, Q., Yu, L.G., Campbell, B.J., Milton, J.D., Rhodes, J.M., 1998. Identification of intact peanut lectin in peripheral venous blood. Lancet 352(9143), 1831–1832.Google Scholar
  181. Wang, X.Y., Bergdahl, K., Heijbel, A., Liljebris, C., Bleasdale, J.E., 2001. Analysis of in vitro interactions of protein tyrosine phosphatase 1B with insulin receptors. Molecular and Cellular Endocrinology 173(1–2), 109–120.Google Scholar
  182. Wasmuth, H.E., Kolb, H., 2000. Cow's milk and immune-mediated diabetes. Proceedings of the Nutrition Society 59(4), 573–579.Google Scholar
  183. Weinsier, R.L., Krumdieck, C.L., 2000. Dairy foods and bone health: examination of the evidence. American Journal of Clinical Nutrition 72(3), 681–689.Google Scholar
  184. Wilson, T.A., Nicolosi, R.J., Marchello, M.J., Kritchevsky, D., 2000. Consumption of ground bison does not increase early atherosclerosis development in hypercholesterolemic hamsters. Nutrition Research 20(5), 707–719.Google Scholar
  185. Winzenberg, T., Shaw, K., Fryer, J., Jones, G., 2006. Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. British Medical Journal 333(7572), 775–780.Google Scholar
  186. Wrangham, R.W., Holland Jones, J., Laden, G., Pilbeam, D., Conklin-Brittain, N.L., 1999. The raw and the stolen. Cooking and the ecology of human origins. Current Anthropology 40(5), 567–594.Google Scholar
  187. Writers of Nordic Nutrition Recommendations, 2004. Nordic Nutrition Recommendations. Nordic Council of Ministers, Copenhagen.Google Scholar
  188. Wu, H.M., Seet, B., Yap, E.P., Saw, S.M., Lim, T.H., Chia, K.S., 2001. Does education explain ethnic differences in myopia prevalence? A population-based study of young adult males in Singapore. Optometry and Vision Science 78(4), 234–239.Google Scholar
  189. Yeung, G.S., Zlotkin, S.H., 2000. Efficacy of meat and iron-fortified commercial cereal to prevent iron depletion in cow milk-fed infants 6 to 12 months of age: a randomized controlled trial. Canadian Journal of Public Health 91(4), 263–267.Google Scholar
  190. Yevdokimova, N.Y., Yefimov, A.S., 2001. Effects of wheat germ agglutinin and concanavalin A on the accumulation of glycosaminoglycans in pericellular matrix of human dermal fibroblasts. A comparison with insulin. Acta Biochimica Polonica 48(2), 563–572.Google Scholar
  191. Young, V.R., Pellett, P.L., 1994. Plant proteins in relation to human protein and amino acid nutrition. American Journal of Clinical Nutrition 59(5 Suppl), 1203S–1212S.Google Scholar
  192. Zhu, S., Heymsfield, S.B., Toyoshima, H., Wang, Z., Pietrobelli, A., Heshka, S., 2005. Race-ethnicity-specific waist circumference cutoffs for identifying cardiovascular disease risk factors. American Journal of Clinical Nutrition 81(2), 409–415.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Staffan Lindeberg
    • 1
  1. 1.Department of Clinical SciencesLund UniversityLundSweden

Personalised recommendations