Neanderthal Dietary Habits: Review of the Isotopic Evidence

  • Hervé Bocherens
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Carbon and nitrogen isotopic ratios of fossil bone collagen reflect those of the average diet, and can be preserved for tens of thousands of years under favorable conditions. Twelve European Neanderthal bones ranging in age from 100,000 to 32,000 years old have yielded reliable collagen. For this well-preserved collagen, isotopic signatures offer the possibility to reconstruct the dietary habits of Neanderthals. The degree of interpretation of the isotopic results depends on the paleoecological context, especially on the knowledge of the available food resources and their isotopic signatures. Animal bones associated with the studied human remains provide the most reliable source for such information. In addition, isotopic data from animal bones can be retrieved from nearby sites of similar age if they are not present in the hominid site. However, the precision of the interpretation decreases when difference in distance and age between hominids and fauna increases.

This paper illustrates how such isotopic investigations have impacted our understanding of Neanderthals' dietary habits. A critical review of the available data will be presented, with a discussion of some methodological points, such as preservation assessment and quantification of consumed protein resources. Comparisons of prey selection patterns based on isotopic results between Neanderthals and animal predators, such as hyenas, show that Neanderthals obtained much of their dietary proteins from very large herbivores in open environments by hunting. Discrepancies between prey consumption by the isotopic approach and by zooarcheology may point to individuals with special diets or transport decision that lead to the underrepresentation of very large mammal bones in archeological assemblages.

Keywords

Neanderthal diet carbon-13 nitrogen-15 collagen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.R.M., Brandt, U., Brauer, A., Hubberten, H.-W., Huntley, B., Keller, J., Kraml, M., Mackensen, A., Mingram, J., Negendank, J.F.W., Nowaczyk, N.R., Oberhänsli, H., Watts, W.A., Wulf, S., Zolltschka, B., 1999. Rapid environmental changes in southern Europe during the last glacial period. Nature 400, 740–743.CrossRefGoogle Scholar
  2. Ambrose, S.H., 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17, 431–451.CrossRefGoogle Scholar
  3. Ambrose, S.H., 1998. Prospects for stable isotopic analysis of later Pleistocene hominid diets in West Asia and Europe. In: Akazawa,T., Aoki, K., Bar-Yosef, O. (Eds.), Origin of Neandertals and humans in West Asia. Plenum Press, New York, pp. 277–289.Google Scholar
  4. Binford, L.R., 1988. Etude taphonomique des restes de la grotte Vaufrey, couche VIII. In: Rigaud, J.-P. (Ed.), La grotte Vaufrey à Cénac et St Julien (Dordogne). Paléoenvironnements, chronologie et activités humaines. Paris. Mémoires de la Société préhistorique Française 19, pp. 535–563.Google Scholar
  5. Bocherens, H., 2003. Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. In: Reumer, W.F., Braber, F., Mol, D., Vos, J. de (Eds.), Advances in mammoth research. Deinsea, Rotterdam 9, pp. 57–76.Google Scholar
  6. Bocherens, H., 2004. Cave bear palaeoecology and stable isotopes: checking the rules of the game. In: Philippe, M., Argant, A., Argant, J. (Eds.), Proceedings of the 9th International Cave Bear Conference, Cahiers scientifiques du Centre de Conservation et d'Etude des Collections (Muséum d'Histoire naturelle de Lyon) Hors Série No 2, pp. 183–188.Google Scholar
  7. Bocherens, H., Drucker, D., 2003a. Reconstructing Neandertal diet from 120,000 to 30,000 BP using carbon and nitrogen isotopic abundances. In: Patou-Mathis, M., Bocherens, H. (Eds.), Le rôle de l'environnement dans les comportements des chasseurs-cueil-leurs préhistoriques. British Archaeological Reports International Series 1105, pp. 1–7.Google Scholar
  8. Bocherens, H., Drucker, D., 2003b. Trophic level isotopic enrichments for carbon and nitrogen in collagen: case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology 13, 46–53.CrossRefGoogle Scholar
  9. Bocherens, H., Drucker, D., 2006. Dietary competition between Neanderthals and modern humans: insights from stable isotopes. In: Conard, N.J. (Ed.), When Neanderthals and modern humans met. Tübingen Publications in Prehistory, Kerns, Tübingen, pp. 129–143.Google Scholar
  10. Bocherens, H., Mariotti, A., 1997. Comments on: diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biochemistry: implications for Pleistocene bears by Bocherens et al. — Reply. Palaeogeography, Palaeoclimatology, Palaeoecology 128, 362–364.CrossRefGoogle Scholar
  11. Bocherens, H., Fizet, M., Mariotti, A., Lange-Badré, B., Vandermeersch, B., Borel, J.-P., Bellon, G., 1991. Isotopic bio-geochemistry (13C, 15N) of fossil vertebrate collagen: implications for the study of fossil food web including Neandertal man. Journal of Human Evolution 20, 481–492.CrossRefGoogle Scholar
  12. Bocherens, H., Fizet, M., Mariotti, A., 1994. Diet, physiology and ecology of fossil mammals as inferred by stable carbon and nitrogen isotopes biogeochemistry: implications for Pleistocene bears. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 213–225.CrossRefGoogle Scholar
  13. Bocherens, H., Billiou, D., Patou-Mathis, M., Bonjean, D., Otte, M., Mariotti, A., 1997. Isotopic biogeochemistry (13C, 15N) of fossil mammal collagen from Scladina cave (Sclayn, Belgium). Quaternary Research 48, 370–380.CrossRefGoogle Scholar
  14. Bocherens, H., Billiou, D., Patou-Mathis, M., Otte, M., Bonjean, D., Toussaint, M., Mariotti, A., 1999. Palaeoenvironmental and palae-odietary implications of isotopic biogeochemistry of late intergla-cial Neandertal and mammal bones in Scladina Cave (Belgium). Journal of Archaeological Science 26, 599–607.CrossRefGoogle Scholar
  15. Bocherens, H., Toussaint, M., Billiou, D., Patou-Mathis, P., Bonjean, D., Otte, M., Mariotti, A., 2001. New isotopic evidence for dietary habits of Neandertals from Belgium. Journal of Human Evolution 40, 497–505.CrossRefGoogle Scholar
  16. Bocherens, H., Drucker, D.G., Billiou, D., Patou-Mathis, M., Vandermeersch, B., 2005. Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. Journal of Human Evolution 49, 71–87.CrossRefGoogle Scholar
  17. Cachel, S., 1997. Dietary shifts and the European Upper Palaeolithic transition. Current Anthropology 38, 579–603.CrossRefGoogle Scholar
  18. Cerling, T.E., Harris, J.M., 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and palaeocological studies. Oecologia 120, 347–363.CrossRefGoogle Scholar
  19. Chase, P.G., 1987. Spécialisation de la chasse et transition vers le Paléolithique supérieur. L'Anthropologie (Paris) 91, 175–188.Google Scholar
  20. DeNiro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809.CrossRefGoogle Scholar
  21. DeNiro, M.J., Epstein, S., 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495–506.CrossRefGoogle Scholar
  22. DeNiro, M.J., Epstein, S., 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45, 341–351.CrossRefGoogle Scholar
  23. DeNiro, M.J., Weiner, S., 1988. Use of collagenase to purify collagen from prehistoric bones for stable isotopic analysis. Geochimica et Cosmochimica Acta 52, 2425–2431.CrossRefGoogle Scholar
  24. Drucker, D., Bocherens, H., Pike-Tay, A., Mariotti, A., 2001. Isotopic tracking of seasonal dietary change in dentine collagen: preliminary data from modern caribou. Comptes Rendus de l'Académie des Sciences, Série II, Paris 333, 303–309.Google Scholar
  25. Drucker, D., Bocherens, H., Bridault, A., Billiou, D., 2003a. Carbon and nitrogen isotopic composition of Red Deer (Cervus elaphus) collagen as a tool for tracking palaeoenvironmental change during Lateglacial and Early Holocene in northern Jura (France). Palaeogeography, Palaeoclimatology, Palaeoecology 195, 375–388.CrossRefGoogle Scholar
  26. Drucker, D., Bocherens, H., Billiou, D., 2003b. Evidence for shifting environmental conditions in Southwestern France from 33,000 to 15,000 years ago derived from carbon-13 and nitrogen-15 natural abundances in collagen of large herbivores. Earth and Planetary Science Letters 216, 163–173.CrossRefGoogle Scholar
  27. Drucker, D.G., Bockerens, H., 2004. Carbon and nitrogen stable isotopes as tracers of diet breadth evolution during middle and upper Palaeolithie in Europe. International Journal of Osteoarchaeology 14,162–177.CrossRefGoogle Scholar
  28. Dufour, E., Bocherens, H., Mariotti, A., 1999. Palaeodietary implications of isotopic variability in Eurasian lacustrine fish. Journal of Archaeological Science 26(6), 627–637.CrossRefGoogle Scholar
  29. Finlayson, C., 2004. Neanderthals and modern humans, an ecological and evolutionary perspective. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  30. Fizet, M., Mariotti, A., Bocherens, H., Lange-Badré, B., Vandermeersch, B., Borel, J.P., Bellon, G., 1995. Effect of diet, physiology and climate on carbon and nitrogen isotopes of collagen in a late Pleistocene anthropic paleoecosystem (France, Charente, Marillac). Journal of Archaeological Science 22, 67–79.CrossRefGoogle Scholar
  31. Fogel, M.L., Tuross, N., Owsley, D.W., 1989. Nitrogen isotope traces of human lactation in modern and archeological populations. Annual Report of the Director of the Geophysical Laboratory, Carnegie Institution 1988–1989, 111–117.Google Scholar
  32. Gaudzinski, S., 1996. On bovid assemblages and their consequences for the knowledge of subsistence patterns in the Middle Palaeolithic. Proceedings of the Prehistoric Society 62, 19–39.CrossRefGoogle Scholar
  33. Guthrie, R.D., 1982. Mammals of the mammoth steppe as paleoen-vironmental indicators. In: Hopkins, D.M., Matthews, J.V., Schweger, C.E., Young, S.B. (Eds.), Paleoecology of Beringia, Academic Press, New York, pp. 307–326.CrossRefGoogle Scholar
  34. Hardy, B.L., Kay, M., Marks, A.E., Monigal, K., 2001. Stone tool function at the paleolithic sites of Starosele and Buran Kaya III, Crimea: behavioral implications. Proceedings of the National Academy of Sciences 98, 10972–10977.CrossRefGoogle Scholar
  35. Higham, T., Bronk Ramsey, C., Karavanic, I., Smith, F.H., Trinkaus, E., 2006. Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. Proceedings of the National Academy of Sciences 103 (3), 553–557.CrossRefGoogle Scholar
  36. Hockett, B., Haws, J., 2003. Nutritional ecology and diachronic trends in Paleolithic diet and health. Evolutionary Anthropology 12(5), 211–216.CrossRefGoogle Scholar
  37. Hockett, B., Haws, J.A., 2005. Nutritional ecology and the human demography of Neandertal extinction. Quaternary International 137, 21–34.CrossRefGoogle Scholar
  38. Huntley, B., Allen, J.R.M., 2003. Glacial environments III: Palaeovegetation patterns in Last Glacial Europe. In: van Andel, T.H., Davis, W. (Eds.), Neanderthals and modern humans in the European landscape during the last glaciation. McDonald Institute Monographs, Oxbow Books, Oxford, pp. 79–102.Google Scholar
  39. Jankovic, I., 2004. Neandertals … 150 years later. Collegium Antropologicum 28(suppl. 2), 379–401.Google Scholar
  40. Jöris, O., 2005. Aus einer anderen Welt – Europa zur Zeit des Neandertalers. In: Conard, N.J., Kölbl, S., Schürle, W. (Eds.), Vom Neandertaler zum modernen Menschen. Jan Thorbecke, Ostfildern, pp. 47–79.Google Scholar
  41. Jouzel, J., Lorius, C., Raynaud, D., 2006. Climat et atmosphère au Quaternaire: de nouveaux carottages glaciaires. Comptes Rendus Palevol 5, 45–55.CrossRefGoogle Scholar
  42. Katzenberg, M.A., Pfeiffer, S., 1995. Nitrogen isotope evidence for weaning age in a nineteenth century canadian skeletal sample. In: Grauer, A.L. (Ed.), Body of evidence. Wiley-Liss, New York, pp. 221–235.Google Scholar
  43. Klein, R.G., 2000. Archeology and the evolution of Human behavior. Evolutionary Anthropology 9(1), 17–36.CrossRefGoogle Scholar
  44. Kurtén, B., 1976. The cave bear story, life and death of a vanished animal. Columbia University Press, New York.Google Scholar
  45. Lalueza Fox, C., Pérez-Pérez, A., 1993. The diet of the Neanderthal child Gibraltar 2 (Devil's Tower) through the study of the vestibu-lar striation pattern. Journal of Human Evolution 24, 29–41.CrossRefGoogle Scholar
  46. Langbroek, M., 2001. Debating neandertals and modern humans in Late Pleistocene Europe. Archaeological Dialogues 8(2), 123–151.CrossRefGoogle Scholar
  47. Longin, R., 1971. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242.CrossRefGoogle Scholar
  48. Marean, C.W., 1998. A critique of the evidence for scavenging by Neandertals and early modern humans: new data from Kobeh Cave (Zagros Mountains, Iran) and Die Kelders Cave 1 layer 10 (South Africa). Journal of Human Evolution, 35, 111–136.CrossRefGoogle Scholar
  49. Marean, C.W., Assefa, Z., 1999. Zooarcheological evidence for the faunal exploitation behavior of Neandertals and early modern humans. Evolutionary Anthropology 8, 22–37.CrossRefGoogle Scholar
  50. Mellars, P., 1989. Major issues in the emergence of Modern Humans. Current Anthropology 30, 349–385.CrossRefGoogle Scholar
  51. Nielsen-Marsh, C.M., Richards, M.P., Hauschka, P.V., Thomas-Oates, J.E., Trinkaus, E., Pettitt, P.B., Karavanic, I., Poinar, H., Collins, M.J., 2005. Osteocalcin protein sequences of Neanderthals and modern primates. Proceedings of the National Academy of Sciences 102(12), 4409–4413.CrossRefGoogle Scholar
  52. Patou, M., 1989. Subsistance et approvisionnement au Paléolithique moyen. In: Freeman, L., Patou, M. (Eds.), L'Homme de Neandertal, vol.6. La subsistance, Etudes et Rercherches Archéologiques de l'Université de Liège (E.R.A.U.L.), 33, Liège, pp. 11–18.Google Scholar
  53. Patou-Mathis, M., 2006. Comportements de subsistance des Néandertaliens du niveau châtelperronien de Saint-Césaire (Charente-Maritime). Munibe (Antropologia-Arkeologia) 57, 197–204.Google Scholar
  54. Phillips, D.L., Koch, P.L, 2002. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114–125.CrossRefGoogle Scholar
  55. Pike-Tay, A., Valdés, V.C., de Quiros, F.B., 1999. Seasonal variations of the Middle-Upper Paleolithic transition at El Castillo, Cueva Morin and El Pendo (Cantabria, Spain). Journal of Human Evolution 36, 283–317.CrossRefGoogle Scholar
  56. Pritchard, G.T., Robbins, C.T., 1990. Digestive and metabolic efficiencies of grizzly and black bears. Canadian Journal of Zoology 68, 1645–1651.CrossRefGoogle Scholar
  57. Richards, M.P., Hedges, R.E.M., 2003. Variations in bone collagen δ13C and δ15N values of fauna from Northwest Europe over the last 40 000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 193, 261–267.CrossRefGoogle Scholar
  58. Richards, M.P., Pettitt, P.B., Trinkaus, E., Smith, F.H., Paunovic, M., Karavanic, I., 2000. Neandertal diet at Vindija and Neandertal predation: the evidence from stable isotopes. Proceedings of the National Academy of Sciences 97, 7663–7666.CrossRefGoogle Scholar
  59. Rockwell, D., 1991. Giving voice to bear. North American Indian myths, rituals, and images of the bear. Roberts Rinehart, Lanham.Google Scholar
  60. Rode, K.D., Robbins, C.T., Shipley, L.A., 2001. Constraints on her-bivory by grizzly bears. Oeocologia 128, 62–71.CrossRefGoogle Scholar
  61. Rodière, É., Bocherens, H., Angibault, J.-M., Mariotti, A., 1996. Particularités isotopiques chez le chevreuil (Capreolus capreolus L.): implications pour les reconstitutions paléoenvironnementales. Comptes Rendus de l'Académie des Sciences, Série II, Paris 323, 179–185.Google Scholar
  62. Roebroeks, W., 2001. Hominid behaviour and the earliest occupation of Europe. Journal of Human Evolution 41(5), 437–461.CrossRefGoogle Scholar
  63. Schoeninger, M.J., DeNiro, M.J., 1984. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48, 625–639.CrossRefGoogle Scholar
  64. Schoeninger, M.J., Iwaniec, U.T., Glander, K.E., 1997. Stable isotope ratios indicate diet and habitat use in New World monkeys. American Journal of physical Anthropology 103, 69–83.CrossRefGoogle Scholar
  65. Skinner, M., 1996. Development stress in immature Hominines from Late Pleistocene Eurasia: evidence from enamel hypoplasia. Journal of Archaeological Science 23, 833–852.CrossRefGoogle Scholar
  66. Smith, F.H., Trinkaus, E., Pettitt, P.B., Paunovic, M., 1999. Direct radiocarbon dates for Vindija G1 and Velika Pecina Late Pleistocene hominid remains. Proceedings of the National Academy of Sciences 96, 12281–12286.CrossRefGoogle Scholar
  67. Speth, J.D., Tchernov, E., 2001. Neandertal hunting and meat-processing in the Near East, evidence from Kebara Cave. In: Stanford, C.B., Bunn, H.T. (Eds.), Meat-eating and human evolution. Oxford University Press, Oxford, pp. 52–72.Google Scholar
  68. Stiner, M.C., 1994. Honor among thieves, a zooarchaeological study of Neandertal ecology. Princeton University Press, Princeton.Google Scholar
  69. Stiner, M.C., 1998. Mortality analysis of Pleistocene bears and its paleoanthropological relevance. Journal of Human Evolution 34, 303–326.CrossRefGoogle Scholar
  70. Strauss, L.G., 2005. A mosaic of change: the Middle-Upper Paleolithic transition as viewed from New Mexico and Iberia. Quaternary International 137, 47–67.CrossRefGoogle Scholar
  71. Trinkaus, E., Moldvan, O., Milota, S., Bilgar, A., Sarcina, L., Athreya, S., Bailey, S.E., Rodrigo, R., Mircea, G., Higham, T., Bronk Ramsey, C., van der Plicht, J., 2003. An early modern human from the Pestera cu Oase, Romania. Proceedings of the National Academy of Sciences 100 (20), 11231–11236.CrossRefGoogle Scholar
  72. van Andel, T.H., 2003. Glacial environments I: the Weichselian climate in Europe between the end of OIS-5 interglacial and the Last Glacial Maximum. In: van Andel, T.H., Davis, W. (Eds.), Neanderthals and modern humans in the European landscape during the last glaciation. McDonald Institute Monographs, Oxbow Books, Oxford, pp. 9–19.Google Scholar
  73. van der Merwe, N.J., Lee-Thorp, J.A., Thackeray, J.F., Hall-Martin, A., Kruger, F.J., Coetzee, H., Bell, R.H.V., Lindeque, M., 1990. Source-area determination of elephant ivory by isotopic analysis. Nature 346, 744–746.CrossRefGoogle Scholar
  74. Vogel, J.C., Van der Merwe, N.J., 1977. Isotopic evidence for early maize cultivation in New York State. American Antiquity 42(2), 238–242.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hervé Bocherens
    • 1
  1. 1.Institute für Geowissenschaften, BiogeologieUniversität TübingenTübingenGermany

Personalised recommendations