Advertisement

Analysing Forensic Entomology Data Using Additive Mixed Effects Modelling

  • Elena N. Ieno
  • Jens Amendt
  • Heike Fremdt
  • Anatoly A. Saveliev
  • Alain F. Zuur
Chapter

Abstract

Forensic pathologists and entomologists estimate the minimum post-mortem interval since a long time by describing the stage of succession and development of the necrophagous fauna (Amendt et al. 2004). From very simple calculations at the beginning, (Bergeret, see also Smith 1986) the discipline has evolved into a more mathematical one (e.g. Marchenko 2001; Grassberger and Reiter 2001, 2002) and tries to implement concepts like probabilities and confidence intervals (Lamotte and Wells 2000; Donovan et al. 2006; Tarone and Foran 2008, see also Villet et al. this book Chapter7). As pointed out by Tarone and Foran (2008) and Van Laerhoven (2008), the latter is one of the major tenets of the Daubert Standard (Daubert et al. v. Merrell Dow Pharmaceuticals (509 U.S. 579 (1993)).

Keywords

Larval Stage Linear Regression Model Generalise Additive Model Linear Mixed Effect Model Confidence Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akadémiai Kiadó, Budapest, Hungary, pp 267–281Google Scholar
  2. Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65CrossRefPubMedGoogle Scholar
  3. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York, USAGoogle Scholar
  4. Cleveland WS (1993) Visualizing data. Hobart, Summit, NJ, USA, p 360Google Scholar
  5. Crawley MJ (2005) Statistics. An introduction using R. Wiley, New YorkGoogle Scholar
  6. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  7. Diggle PJ, Heagerty P, Liang KY, Zeger SL (2002) The analysis of longitudinal data, 2nd edn. Oxford University Press, Oxford, EnglandGoogle Scholar
  8. Donovan SE, Hall MJR, Turner BD, Moncrieff CB (2006) Larval growth rates of the blowfly Calliphora vicina over a range of temperatures. Med Vet Entomol 20:106–114CrossRefGoogle Scholar
  9. Draper N, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New YorkGoogle Scholar
  10. Fremdt H (2008) Der Einfluss von Rohypnol® und Ethanol auf Sukzession und Entwicklung nekrophager Insekten. Unpublished Master thesis, University of KielGoogle Scholar
  11. Grassberger M and C Reiter (2001) Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen-and isomorphen-diagram. Forensic Sci. Int. 120, 32–36CrossRefPubMedGoogle Scholar
  12. Grassberger M and C Reiter (2002) Effect of temperature on development of the forensically important holoarctic blow fly Protophormia terraenovae (Robineau-Desvoidy) (Diptera Calliphoridae). Forensic. Sci. Int.128, 177–182CrossRefPubMedGoogle Scholar
  13. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  14. Jacoby WG (2006) The dot plot: a graphical display for labeled quantitative values. The Pol Methodologist 14(1):6–14Google Scholar
  15. Keele LJ (2008) Semiparametric regression for the social sciences, Wiley, New YorkGoogle Scholar
  16. LaMotte LR and JD Wells (2000) P-values for postmortem intervals from arthropod succession data. Journal of Agricultural, Biological and Environmental Statistics 5:58–68CrossRefGoogle Scholar
  17. Marchenko MJ (2001) Medicolegal relevance of cadaver entomofauna for the determination of time since death. Forensic Sci Int 120:89–109CrossRefPubMedGoogle Scholar
  18. Montgomery DC, Peck EA (1992) Introduction to linear regression analysis. Wiley, New York 504Google Scholar
  19. Pinheiro J, Bates D (2000) Mixed effects models in S and S-Plus. Springer, New York, USACrossRefGoogle Scholar
  20. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  21. Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric Regression. Cambridge Univerity Press, New YorkCrossRefGoogle Scholar
  22. Schabenberger O, Pierce FJ (2002) Contemporary statistical models for the plant and soil sciences. CRC, Boca Raton, FLGoogle Scholar
  23. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  24. Smith KGV (1986) A Manual of Forensic Entomology. Cornell University Press, IthacaGoogle Scholar
  25. Tarone AM, Foran DR (2008) Generalized additive models and Lucilia sericata growth: assesing confidence intervals and error rates in forensic entomology. J Forensic Sci 53(4)Google Scholar
  26. Van Laerhoven SL (2008) Blind validation of postmortem interval estimates using developmental rates of blow flies. Forensic Sci Int. 180:76–80CrossRefGoogle Scholar
  27. Wells JD, Lamotte LR (1995) Estimating maggot age from weight using inverse prediction. J Forensic Sci 40(4):585–90Google Scholar
  28. West B, Welch KB, Galecki AT (2006) Linear mixed models: a practical guide using statistical software. Chapman and Hall/CRC, Boca Raton, FLGoogle Scholar
  29. Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. J Am Stat Assoc 99:673–686CrossRefGoogle Scholar
  30. Wood SN (2006) Generalized additive models: an introduction. Chapman and Hall/CRC,Google Scholar
  31. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, Upper Saddle River, USAGoogle Scholar
  32. Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, Berlin p 680Google Scholar
  33. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models in ecology with R (2008-In press). Springer, Berlin p 650Google Scholar
  34. Zuur, AF, Ieno, EN, Walker, N, Saveliev, AA, and Smith, GM (2009) Mixed effects models and extensions in ecology with R. SpringerGoogle Scholar
  35. Zuur AF Ieno EN Meesters EHWG (2009b) A Beginner’s Guide to R SpringerGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Elena N. Ieno
    • 1
  • Jens Amendt
    • 2
  • Heike Fremdt
    • 2
  • Anatoly A. Saveliev
    • 3
  • Alain F. Zuur
    • 1
  1. 1.Highlands Statistics Ltd.NewburghUK
  2. 2.Institute of Forensic MedicineFrankfurt am MainGermany
  3. 3.Faculty of Geography and EcologyKazan State UniversityKazanRussia

Personalised recommendations