Advertisement

Toxicity of Metallic Nanoparticles in Microorganisms- a Review

  • Javed H. Niazi
  • Man Bock GuEmail author

Abstract

Recent advances in the synthesis and development of nanoparticles (NPs) for wide applications has lead to a serious threat to both human and environmental health. NPs are highly reactive and catalytic in nature compared to their ions or bulk counterparts and thus applicable in various fields including drug delivery, electronics, optics, and therapeutics. Due to these applications, many varieties of NPs in massive amounts are being industrially produced. These NPs are discharged in to the environment and thus providing a path to enter into food chain via microorganisms and eventually disturbs the ecological balance. The NPs exhibit toxicity to living organisms mainly because of their small size (>100 nm), large surface-to-volume ratio and highly reactive facets. The microorganisms including bacteria present in the natural ecosystem are the primary targets that get exposed to NPs. Before these NPs enter into the food chain, it is imperative to evaluate the toxicity associated with NPs in microorganisms. The most convenient and rapid way is to perform toxicity analysis using microorganisms such as bacteria. Toxicity of nanomaterials using microorganisms such as E.coli, Pseudomonas, Bacillus as models for prokaryotes gives an insight into the toxic impacts of NPs. Toxicities associated with NPs in microorganisms is mainly related to their nano-size that cause membrane disorganization, generation of reactive oxygen species (ROS) and in some ases, oxidative DNA damage. In this review article we describe the toxicity of various nanoparticles in bacteria and provide a rationale for assessing nanotoxicity and discuss the current status on toxicity impacts on microorganisms.

Keywords

keywords Nanoparticles Nanotoxicity Membrane damage Reactive oxygen species Oxidative toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams LK, Lyon DY and Alvarez PJ (2006a) Comparative eco-toxicity of nanoscale TiO2, SiO2 and ZiO2 Water suspensions. Water Res 40: 3527–3532Google Scholar
  2. Adams LK, Lyon DY, McIntosh A and Alvarez PJJ (2006b) Comparative toxicity of nano scale TiO2, SiO2 and Zno water suspensions. Water Sci Technol 54: 327–334Google Scholar
  3. Astruc D, Blais JC, Daniel MC, Gatard S, Nlate S and Ruiz J (2003) Metallodendrimers and dendronized gold colloids as nanocatalysts, nanosensors and nanomaterials for molecular electronics. C R Chim 6: 1117–1127Google Scholar
  4. Baker C, Pradhan A, Pakstis L, Pochan DJ and Ismat SS (2005) Synthesis and antibacterial properties of silver nanoparticles. J Nanosci Nanotechnol 5: 244–249CrossRefGoogle Scholar
  5. Balkwill DL, Maratea D and Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141: 1399–1408Google Scholar
  6. Beveridge TJ, Hughes MN, Lee H, Leung KT, Poole RK, Savvaidis I, Silver S and Trevors JT (1997) Metal-microbe interactions: contemporary approaches. Adv Microb Physiol 38: 177–243CrossRefGoogle Scholar
  7. Beydoun D, Amal R, Low G and McEvoy S (1999) Role of nanoparticles in photocatalysis. J Nanoparticle Res 1: 439–458CrossRefGoogle Scholar
  8. Bielski BH, Arudi RL and Sutherland MW (1983) A study of the reactivity of HO2/O2- with unsaturated fatty acids. J Biol Chem 258: 4759–4761Google Scholar
  9. Borm PJ and Kreyling W (2004) Toxicological hazards of inhaled nanoparticles – potential implications for drug delivery. J Nanosci Nanotechnol 4: 521–531CrossRefGoogle Scholar
  10. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D and Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3: 11CrossRefGoogle Scholar
  11. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF and Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6: 866–870CrossRefGoogle Scholar
  12. Brown DM, Wilson MR, MacNee W, Stone V and Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175: 191–199CrossRefGoogle Scholar
  13. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A and Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40: 4374–4381CrossRefGoogle Scholar
  14. Caminade AM and Majoral JP (2004) Nanomaterials based on phosphorus dendrimers. Acc Chem Res 37: 341–348CrossRefGoogle Scholar
  15. Chatellier X, Bottero JY and Le Petit J (2001) Adsorption of a cationic polyelectrolyte on Escherichia coli bacteria: 1. Adsorption of the polymer. Langmuir 17: 2782–2790CrossRefGoogle Scholar
  16. Chen WJ, Tsai PJ and Chen YC (2008) Functional Fe(3)O(4)/TiO(2) Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria. Small 4: 485–491CrossRefGoogle Scholar
  17. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21: 1166–1170CrossRefGoogle Scholar
  18. De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T and Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Antonie Van Leeuwenhoek 90: 377–389CrossRefGoogle Scholar
  19. Derfus AM, Chan WCW and Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4: 11–18CrossRefGoogle Scholar
  20. Fang J, Lyon DY, Wiesner MR, Dong J and Alvarez PJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41: 2636–2642CrossRefGoogle Scholar
  21. Fasim F, Ahmed N, Parsons R and Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213: 1–6CrossRefGoogle Scholar
  22. Fischer HC and Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18: 565–571CrossRefGoogle Scholar
  23. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, Alemany LB, Tao YJ, Guo W, Ausman KD, Colvin VL and Hughes JB (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39: 4307–4316CrossRefGoogle Scholar
  24. Frankel RB (1987) Microbial metabolism-anaerobes pumping iron. Nature 330: 208–209CrossRefGoogle Scholar
  25. Fredrickson JK, Zachara JM, Kukkadapu RK, Gorby YA, Smith SC and Brown CF (2001) Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. Environ Sci Technol 35: 703–712CrossRefGoogle Scholar
  26. Fu J, Ji J, Fan D and Shen J (2006) Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex. J Biomed Mater Res A 79: 665–674Google Scholar
  27. Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, Bols NC and Tang XS (2008) Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3: 347–351CrossRefGoogle Scholar
  28. Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS and Chattopadhyay A (2006) Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22: 9322–9328CrossRefGoogle Scholar
  29. Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM and Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115: 403–409CrossRefGoogle Scholar
  30. Gorby YA, Beveridge TJ and Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170: 834–841Google Scholar
  31. Heinlaan M, Ivask A, Blinova I, Dubourguier HC and Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO(2) to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71: 1308–1316CrossRefGoogle Scholar
  32. Hoffmann M, Martin S, Choi W and Bahnemann D (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95: 69–96CrossRefGoogle Scholar
  33. Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D and Hao B (2008) Toxicological EFFECT of ZnO nanoparticles based on bacteria. Langmuir 24: 4140–4144CrossRefGoogle Scholar
  34. Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI and B. GM (2008) Analysis of the toxic mode of action by silver nano-particles using stress-specific bioluminescent bacteria. Small 4: 746–750CrossRefGoogle Scholar
  35. Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57: 395–418CrossRefGoogle Scholar
  36. Jeng HA and Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41: 2699–2711Google Scholar
  37. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y and Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39: 1378–1383CrossRefGoogle Scholar
  38. Joo SH, Feitz AJ and Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38: 2242–2247CrossRefGoogle Scholar
  39. Kai Y, Komazawa Y, Miyajima A, Miyata N and Yamakoshi Y (2003) [60]Fullerene as a novel photoinduced antibiotic. Fuller Nanotub Car N 11: 79–87CrossRefGoogle Scholar
  40. Kang S, Pinault M, Pfefferle LD and Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23: 8670–8673CrossRefGoogle Scholar
  41. Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114: 1697–1702Google Scholar
  42. Ke PC and Qiao R (2007) Carbon nanomaterials in biological systems. J Phys Condens Matter 19 373101 (25 pp)Google Scholar
  43. Kohen R and Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30: 620–650CrossRefGoogle Scholar
  44. Lam CW, James JT, McCluskey R and Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77: 126–134CrossRefGoogle Scholar
  45. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA and Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40: 6304–6309CrossRefGoogle Scholar
  46. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J and Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111: 455–460Google Scholar
  47. Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D and Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39: 9370–9376CrossRefGoogle Scholar
  48. Lin Y, Taylor S, Li HP, Fernando KAS, Qu LW, Wang W, Gu LR, Zhou B and Sun YP (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14: 527–541CrossRefGoogle Scholar
  49. Liu S, Zhou J, Zhang CC, Cole DR, Gajdarziska M and Phelps TJ (1997) Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implication. Science 277: 1106–1109CrossRefGoogle Scholar
  50. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF and Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5: 916–924CrossRefGoogle Scholar
  51. Lovely DR, Stolz JF, Nord Jr. GL and Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Naure 330: 252–254Google Scholar
  52. Lovley DR (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14: 85–93CrossRefGoogle Scholar
  53. Lu Q, Moore JM, Huang G, Mount AS, Rao AM, Larcom LL and Ke P (2004) RNA polymer translocation with single-walled carbon nanotubes. Nano Lett 4: 2473–2477CrossRefGoogle Scholar
  54. Lyon DY, Adams LK, Falkner JC and Alvarezt PJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40: 4360–4366CrossRefGoogle Scholar
  55. Lyon DY, Fortner JD, Sayes CM, Colvin VL and Hughe JB (2005) Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem 24: 2757–2762CrossRefGoogle Scholar
  56. Maenosono S, Suzuki T and Saita S (2007) Mutagenicity of water-soluble FePt nanoparticles in Ames test. J Toxicol Sci 32: 575–579CrossRefGoogle Scholar
  57. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B and Forro L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6: 1121–1125CrossRefGoogle Scholar
  58. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G and Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69: 485–492CrossRefGoogle Scholar
  59. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32: 967–976CrossRefGoogle Scholar
  60. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT and Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346–2353CrossRefGoogle Scholar
  61. Narayan RJ, Berry CJ and Brigmon RL (2005) Structural and biological properties of carbon nanotube composite films. Mat Sci Eng B-Solid 123: 123–129CrossRefGoogle Scholar
  62. Nel A, Xia T, Madler L and Li N (2006) Toxic potential of materials at the nanolevel. Science 311: 622–627CrossRefGoogle Scholar
  63. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27: 313–339CrossRefGoogle Scholar
  64. Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112: 1058–1062Google Scholar
  65. Oberdorster E, Zhu S, Blickley TM, McClellan-Green P and Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44: 1112–1120CrossRefGoogle Scholar
  66. Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D and Yang H (2005a) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2: 8Google Scholar
  67. Oberdorster G, Oberdorster E and Oberdorster J (2005b) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823–839Google Scholar
  68. Oberdorster G, Stone V and Donaklson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1: 2–25CrossRefGoogle Scholar
  69. Pal S, Tak YK and Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73: 1712–1720CrossRefGoogle Scholar
  70. Partha R, Lackey M, Hirsch A, Casscells SW and Conyers JL (2007) Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures. J Nanobiotechnol 5: 6CrossRefGoogle Scholar
  71. Porter AE, Muller K, Skepper J, Midgley P and Welland M (2006) Uptake of C60 by human monocyte macrophages, its localization and implications for toxicity: studied by high resolution electron microscopy and electron tomography. Acta Biomater 2: 409–419CrossRefGoogle Scholar
  72. Rasanen LA, Elvang AM, Jansson J and Lindstrom K (2001) Effect of heat stress on cell activity and cell morphology of the tropical rhizobium, Sinorhizobium arboris. FEMS Microbiol Ecol 34: 267–278Google Scholar
  73. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C and Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90: 213902CrossRefGoogle Scholar
  74. Rengifo-Herrera JA, Sanabria J, Machuca F, Dierolf CF, Pulgarin C and Orellana G (2007) A comparison of solar photocatalytic inactivation of waterborne E. coli using tris(2,2′-bipyridine)ruthenium(II), Rose Bengal, and TiO2. J. Solar Energy Engg. 129: 135–140CrossRefGoogle Scholar
  75. Rikans LE and Hornbrook KR (1997) Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta 1362: 116–127Google Scholar
  76. Ritz M, Tholozan JL, Federighi M and Pilet MF (2001) Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Appl Environ Microbiol 67: 2240–2247CrossRefGoogle Scholar
  77. Ruparelia JP, Chatterjee AK, Duttagupta SP and Mukherji S (2007) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4: 707–716CrossRefGoogle Scholar
  78. SCENIHR (2006) The appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Available at: http://ec.europa.eu/health/opinions2/en/nanotechnologies/ l-3/9-conclusion.htm
  79. Seetharam RN and Sridhar KR (2007) Nanotoxicity: Threat posed by nanoparticles. Curr Scie 93: 769–770Google Scholar
  80. Sera N, Tokiwa H and Miyata N (1996) Mutagenicity of the fullerene C60-generated singlet oxygen dependent formation of lipid peroxides. Carcinogenesis 17: 2163–2169CrossRefGoogle Scholar
  81. Silver S (1996) Bacterial resistance to toxic metal ions-a review. Gene 179: 9–19CrossRefGoogle Scholar
  82. Sondi I and Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275: 177–182CrossRefGoogle Scholar
  83. Stoimenov PK, Klinger RL, Marchin GL and Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18: 6679–6686CrossRefGoogle Scholar
  84. Subramanian V, Wolf EE and Kamat PV (2003) Influence of metal/metal ion concentration on the photocatalytic activity of TiO2-Au composite nanoparticles. Langmuir 19: 469–474CrossRefGoogle Scholar
  85. Tang YJ, Ashcroft JM, Chen D, Min G, Kim CH, Murkhejee B, Larabell C, Keasling JD and Chen FF (2007) Charge-associated effects of fullurene derivatives on microbial structural integrity and central metabolism. Nano Lett 7: 754–760CrossRefGoogle Scholar
  86. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M and Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40: 6151–6156Google Scholar
  87. Tsuang YH, Sun JS, Huang YC, Lu CH, Chang WH and Wang CC (2008) Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs 32: 167–174CrossRefGoogle Scholar
  88. Veeranagouda Y, Karegoudar TB, Neumann G and Heipieper HJ (2006) Enterobacter sp. VKGH12 growing with n-butanol as the sole carbon source and cells to which the alcohol is added as pure toxin show considerable differences in their adaptive responses. FEMS Microbiol Lett 254: 48–54Google Scholar
  89. Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA and Narayan RJ (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7: 1284–1297CrossRefGoogle Scholar
  90. Yamakoshi Y, Umezawa N, Ryu A, Arakane K, Miyata N, Goda Y, Masumizu T and Nagano T (2003) Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-* versus 1O2. J Am Chem Soc 125: 12803–12809CrossRefGoogle Scholar
  91. Zhang L, Jiang Y, Ding Y, Povey M and York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9: 479–489CrossRefGoogle Scholar
  92. Zhu S, Oberdorster E and Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62 Suppl: S5–S9CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.College of Life Sciences and BiotechnologyKorea UniversityAnam-dong, Seongbuk-GuSouth Korea

Personalised recommendations