Positioning Pelagic Fish from Sunrise and Sunset Times: Complex Observation Errors Call for Constrained, Robust Modeling

Part of the Reviews: Methods and Technologies in Fish Biology and Fisheries book series (REME, volume 9)


Current lightbased geolocation techniques used to identify migration routes of highly mobile species have inherent limitations, depending on the type of tag technologies used. Recovered data storage tags provide detailed time series of light-levels suited for extensive post-processing, while pop-up satellite tags (PSATs) are bandwidth-limited and generally provide samples only at critical times of the day. An alternative approach is to detect a sunrise or sunset event and transmit only this information, thus freeing bandwidth for depth or temperature data. We show here that this geolocation technique retains the essential information to correct for known problems such as errors at the equinoxes. We describe the suitable model for such data, as well as the behavior of resulting location error and bias in simulated cases. Illustrations from PSAT tags at the ocean’s surface and on a freely-swimming fish reveal a highly non-Gaussian error distribution. To solve for this, we present a more generalized estimation framework than linear Gaussian models, based on an extension of the Kalman filter. We apply iterative nonlinear Least squares to address non-Gaussian errors, non-linear dynamics and missing data. The proposed optimization method may include coastlines or bathymetric limits as hard constraints. Our results indicate that sunrise/sunset-based geolocation is a viable technique technique to surmount tag design or engineering limitations when tracking pelagic fish.


Light geolocation Sunrise Sunset Kalman Filtering Gauss-Newton Bathymetry constraints 


  1. Bell, B. (1994). The iterated Kalman smoother as a Gauss-Newton method. J SIAM J Opt 4: 626–636CrossRefGoogle Scholar
  2. Block, B., Teo S. L. H., Walli, A., Boustany, A., Stokesbury, M. J. W., Farwell, C., Weng, K. C., Dewar, H., and Williams, T. (2005). Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434:1121–1127CrossRefPubMedGoogle Scholar
  3. Durbin, J., and Cordero, M. (1993). Handling structural shifts, outliers and heavy- tailed distribution in state-space time series models. 93/03. Bureau of the Census Statistical Research Division, Washington, D.C.Google Scholar
  4. Ekstrom, P.A. (2004). An advance in geolocation by light. Memoir Natl Inst Polar Res 58:210–226Google Scholar
  5. Fahrmeir, L., and Kunstler, R. (1998). Penalized Likelihood Smoothing in Robust State Space Models. Metrika 49:173–191CrossRefGoogle Scholar
  6. Fromentin, J.-M., and Powers, J.E. (2005). Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish Fish 6:1–25Google Scholar
  7. Gelb, A. (1974). Applied Optimal Estimation. The MIT PressGoogle Scholar
  8. Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University PressGoogle Scholar
  9. Lutcavage, M. E., Brill, R. W., Skomal, G. B., Bradford, C. C., and Howey, P. W. (1999). Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine: do North Atlantic bluefin tuna spawn in the mid-Atlantic? Can J Fish Aquat Sci 56:173–177CrossRefGoogle Scholar
  10. Lutcavage, M. E., Brill, R. W., Goldstein, J. L., Skomal, G. B., Chase, B. C., and Tutein, J. (2000). Movements and behavior of adult North Atlantic bluefin tuna (Thunnus thynnus) in the northwest Atlantic determined using ultrasonic telemetry. Mar Bioly 137:347–358CrossRefGoogle Scholar
  11. Nielsen, A., Bigelow, K. A., Musyl, M. K., and Sibert, J.R. (2006). Improving light-based geolocation by including sea surface temperature. Fish Oceanogr 15:314–325CrossRefGoogle Scholar
  12. Nielsen, A., and Sibert, J. R. (2007). State-space model for light-based tracking of marine animals. Can J Fish Aquat Sci 64:1055–1068CrossRefGoogle Scholar
  13. Psiaki, M. L. (2005). Backward-smoothing extended kalman filter. J Guid Control Dyn 28:885–894CrossRefGoogle Scholar
  14. Rauch H. E., Tung F., and Striebel, C. T. (1965). Maximum likelihood estimates of dynamic linear systems. AIAA J 3:1445–1450CrossRefGoogle Scholar
  15. Roweis, S., and Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Comput 11:305–345CrossRefPubMedGoogle Scholar
  16. Royer, F., Wilson, S., and Lutcavage, M. (2008). Spatial dynamics of Atlantic Bluefn Tuna in the North-Western Atlantic: Seasonal distribution, depth behavior and effect of the Gulf stream variability. In revisionGoogle Scholar
  17. Sibert, J. R., Hampton, J., Fournier, D. A., and Bills, P. J. (1999). An advection-diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis). Can J Fish Aquat Sci 56:925–938CrossRefGoogle Scholar
  18. Sibert, J. R., Musyl, M. K., and Brill, R. (2003). Horizontal movements of bigeye tuna (Thunnus obesus) near Hawaii determined by Kalman filter analysis from archival tagging data. Fish Oceanogr 12:141–151CrossRefGoogle Scholar
  19. Simon, D., and Chia, T. (2002). Kalman filtering with state equality constraints. IEEE Trans Aerospace and Electronic Syst 39:128–136CrossRefGoogle Scholar
  20. Spiegelhalter, D. J., Thomas, A., Best, N., and Gilks, W. R. (1996). BUGS 0.5, Bayesian Inference Using Gibbs Sampling. Technical manual, Medical Research Council Biostatistics Unit, Institute of Public HealthGoogle Scholar
  21. Stokesbury, M. J. W., Teo., S. L. H., Seitz, A., O’Dor, R. K., and Block, B.A. (2004). Movement of Atlantic bluefin tuna (Thunnus thynnus) as determined by satellite tagging experiments initiated off New England. Can J Fish Aquat Sci 61:1976–1987CrossRefGoogle Scholar
  22. Vallado, D. (2001). Fundamentals of Astrodynamics and Applications. KluwerGoogle Scholar
  23. Wan, E., and van der Merwe, R. (2001). The unscented Kalman filter. In: Kalman Filtering and Neural Networks, S. Haykin (ed), Wiley PublishingGoogle Scholar
  24. Welch, D. W., and Eveson, J.P. (1999). An assessment of light-based geo-position estimates from archival tags. Can J Fish Aquat Sci 56:1317–1327CrossRefGoogle Scholar
  25. Wilson, S.G., Lutcavage, M., Brill, R., Genovese, M.P., Cooper, A.B., and Everly, A. W. (2005). Movements of bluefin tuna (Thunnus thynnus) in the northwerstern Atlantic Ocean recorded by pop-up satellite archival tags. Mar Biol 146:409–423CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Collecte Localisation Satellites, Parc Technologique du CanalRamonville Saint-AgneFrance
  2. 2.Large Pelagics Research Center, University of New HampshireDurhamUSA

Personalised recommendations