Processes regulating the community composition and relative abundance of taxa in the diatom communities of the Malili Lakes, Sulawesi Island, Indonesia

  • Andrew J. Bramburger
  • Paul B. Hamilton
  • Peter E. Hehanussa
  • G. Douglas Haffner
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 205)


Although high levels of endemism have been reported on Sulawesi Island for almost 150 years, the aquatic systems of the island have received little attention until recently. The diatoms of the ancient Malili Lakes, located on central Sulawesi, exhibit levels of endemism unequaled elsewhere in the world. Interestingly, the diatom community of the lakes is taxonomically impoverished, and the entire order Centrales is conspicuous by its absence. In this article we review the mechanisms contributing to the development and maintenance of community composition and relative abundance of taxa within the system, at within-lake and system-wide scales. Our findings demonstrate that stochastic processes related to biogeography and colonization have had little influence on the diatom flora of the lakes, and deterministic processes related to competition, selection, speciation, and adaptive radiation, functioning on very small spatial scales, have contributed greatly to the diversity, community structure, and endemism of the system.


Ancient lakes Diatoms Malili Lakes Community ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bramburger, A. J., G. D. Haffner & P. B. Hamilton, 2004. Examining the distributional patterns of the diatom flora of the Malili Lakes, Sulawesi, Indonesia. In Poulin, M. (ed.), Proceedings of the 17th International Diatom Symposium. Biopress Limited, Bristol, U.K.: 11–25.Google Scholar
  2. Bramburger, A. J., P. B. Hamilton, P. E. Hehanussa, F. Hinz & G. D. Haffner, 2006. An examination of species within the genus Surirella from the Malili Lakes, Sulawesi Island, Indonesia, with descriptions of 11 new taxa. Diatom Research 21: 1–56.Google Scholar
  3. Bramburger, A. J., P. B. Hamilton, P. E. Hehanussa & G. D. Haffner, in press a. Spatial patterns of planktonic and benthic diatom distribution and assemblage similarity in Lake Matano (Sulawesi Island, Indonesia). Proceedings of the 19th International Diatom Symposium, 28 pp.Google Scholar
  4. Bramburger, A. J., P. B. Hamilton, P. E. Hehanussa & G. D. Haffner, in press b. Colonization of artificial substrates by the littoral diatom community of an ancient tropical lake. Journal of Phycology.Google Scholar
  5. Brooks, L., 1950. Speciation in ancient lakes (concluded). The Quarterly Review of Biology 25: 131–176.PubMedCrossRefGoogle Scholar
  6. Clements, F. E., 1916. Plant succession: an analysis of the development of vegetation. Carnegie Institution, Washington, D.C., Publication No. 242.Google Scholar
  7. Cleve, P. T., 1894. Synopsis of the naviculoid diatoms part I. Kongliga Svenska Vetenskaps Akademiens Handlingar 26: 1–194.Google Scholar
  8. Cleve, P. T., 1895. Synopsis of the naviculoid diatoms part II. Kongliga Svenska Vetenskaps Akademiens Handlingar 27: 1–219.Google Scholar
  9. Cocquyt, C., 1998. Diatoms from the northern basin of Lake Tanganyika. Bibliotheca Diatomologica 39: 1–275.Google Scholar
  10. Coulter, G. W., 1963. Hydrological changes in relation to biological production in southern Lake Tanganyika. Limnology and Oceanography 8: 463–477.Google Scholar
  11. Cronk, Q. C. B., 1997. Islands: stability, diversity, conservation. Biodiversity and Conservation 6: 477–493.CrossRefGoogle Scholar
  12. Culver, S. J. & M. A. Buzas, 2000. Global latitudinal species gradient in deep-sea benthic foraminifera. Deep Sea Research Part 1: Oceanographic Research Papers 47: 259–275.CrossRefGoogle Scholar
  13. Darwin, C. R., 1841. The Voyage of the Beagle. J Murray, London.Google Scholar
  14. Den Bosch, H. A. J., 1985. Snakes of Sulawesi: checklist, key, and additional biogeographical remarks. Zoologische Verhandlingen 217: 1–50.Google Scholar
  15. Eccles, D. H., 1974. An outline of the physical limnology of Lake Malawi (Lake Nyasa). Limnology and Oceanography 19: 730–742.Google Scholar
  16. Edlund, M. B., 2006. Persistent low diatom phytoplankton diversity within the otherwise highly diverse Lake Baikal ecosystem. Nova Hedwigia 130: 339–356.Google Scholar
  17. Edlund, M. B., R. M. Williams & N. Soninkhishig, 2003. The planktonic diatom diversity of ancient Lake Hövsgöl, Mongolia. Phycologia 42: 232–260.CrossRefGoogle Scholar
  18. Edlund, M. B., Z. Levkov, N. Soninkhishig, S. Krstic & T. Nakov, 2006. Diatom species flocks in large ancient lakes: the Navicula reinhardtii complex from Lakes Hövsgöl (Mongolia) and Prespa (Macedonia). In Witkowski, A. (ed.), Proceedings of the 18th International Diatom Symposium 2004. Biopress Limited, Bristol, U.K.: 61–74.Google Scholar
  19. Elton, C. S., 1946. Competition and the structure of ecological communities. Journal of Animal Ecology 15: 54–68.CrossRefGoogle Scholar
  20. Flower, R. J., G. Pomazkina, E. Rodionova & D. M. Williams, 2004. Local and mesoscale diversity patterns of benthic diatoms in Lake Baikal. In Poulin, M. (ed.), Proceedings of the 17th International Diatom Symposium, Ottawa 25th–31st August 2002. Biopress Limited, Bristol, U.K.: 69–92.Google Scholar
  21. Foged, N., 1981. Diatoms in Alaska. Bibliotheca Phycologica 53: 1–318.Google Scholar
  22. Fryer, G., 1996. Evolution in ancient lakes. Hydrobiologia 321: 245–254.CrossRefGoogle Scholar
  23. Haffner, G. D., P. E. Hehanussa & D. Hartoto, 2001. The biology and physical processes of large lakes of Indonesia. In Munawar, M. & R. E. Hecky (eds), The Great Lakes of the World. Backhuys Publishers, Leiden: 183–192.Google Scholar
  24. Hustedt, F., 1942. Süßwasser-Diatomeen des indomalayischen Archipels und der Hawaii-Inseln. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 42: 1–252.CrossRefGoogle Scholar
  25. Kontula, T., S. V. Kirilchik & R. Vainola, 2003. Endemic diversification of the monophyletic cottoid fish species flock in Lake Baikal explored with mtDNA sequencing. Molecular Phylogenetics and Evolution 1: 143–155.CrossRefGoogle Scholar
  26. Kottelat, M., 1990a. Synopsis of the endangered Buntingi (Osteichthyes: Adrianichthydae and Oryziidae) of Lake Poso, Central Sulawesi, Indonesia, with a new reproductive guild and descriptions of three new species. Ichthyological Exploration of Freshwaters 1: 49–67.Google Scholar
  27. Kottelat, M., 1990b. The ricefishes (Oryziidae) of the Malili Lakes, Sulawesi, Indonesia, with description of a new species. Ichthyological Exploration of Freshwaters 1: 321–344.Google Scholar
  28. Kottelat, M., 1990c. Sailfin silversides (Pisces: Telmatherinidae) of Lakes Towuti, Mahalona, and Wawontoa (Sulawesi, Indonesia) with descriptions of two new species. Ichthyological Exploration of Freshwaters 1: 35–54.Google Scholar
  29. Lack, D., 1947. Darwin’s Finches. Cambridge University Press, Cambridge, UK.Google Scholar
  30. Lodge, D. M., 1993. Species invasions and deletions: community effects and responses to climate and habitat change. In Kareiva, O. M., J. G. Kingsolver & R. B. Huey (eds), Biotic Interactions and Global Change. Sinauer Associates, Sunderland, MA: 367–387.Google Scholar
  31. MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.Google Scholar
  32. Metzeltin, D. & H. Lange-Bertalot, 1998. Tropical diatoms of South America I. About 700 predominantly rarely known or new taxa representative of the neotropical flora. Iconographia Diatomologica 5: 1–695.Google Scholar
  33. Moser, G., H. Lange-Bertalot & D. Metzeltin, 1998. Insel der Endemiten. Geobotanisches Phänomen Neukaledonien. Diatomeenflora einer Tropeninsel. Bibliotheca Diatomologica 38: 1–464.Google Scholar
  34. Pachepsky, E., J. W. Crawford, J. L. Bown & G. Squire, 2001. Towards a general theory of biodiversity. Nature 410: 923–926.PubMedCrossRefGoogle Scholar
  35. Patrick, R., 1967. The effect of invasion rate, species pool, and size of area on the structure of the diatom community. Proceedings of the National Academy of Sciences of the United States of America 58: 1335–1342.PubMedCrossRefGoogle Scholar
  36. Patrick, R., 1975. The formation and maintenance of benthic diatom communities. Proceedings of the American Philosophical Society 120: 475–484.Google Scholar
  37. Preston, F. W., 1948. The commonness, and rarity, of species. Ecology 29: 254–283.CrossRefGoogle Scholar
  38. Rahel, F. J., 2002. Homogenization of freshwater faunas. Annual Review of Ecology and Systematics 33: 291–315.CrossRefGoogle Scholar
  39. Reudi, M., 1995. Taxonomic revision of shrews of the genus Crocidura from the Sunda Shelf and Sulawesi with descriptions of two new species (Mammalia: Soricidae). Zoological Journal of the Linnean Society 115: 211–265.CrossRefGoogle Scholar
  40. Ricciardi, A., 2001. Facilitative interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes? Canadian Journal of Fisheries and Aquatic Sciences 58: 2513–2525.CrossRefGoogle Scholar
  41. Roy, D., M. F. Docker, D. D. Heath & G. D. Haffner, 2004. Genetic and morphological data supporting the hypothesis of adaptive radiation in the endemic fish of Lake Matano. Journal of Evolutionary Biology 17: 1268–1276.PubMedCrossRefGoogle Scholar
  42. Sabo, E., D. Roy, P. B. Hamilton, P. E. Hehanussa, R. McNeely & G. D. Haffner, 2008. The plankton community of Lake Matano: factors regulating plankton composition and relative abundance in an ancient tropical lake of Indonesia. Hydrobiologia (this volume).Google Scholar
  43. Schluter, D., 2000. The Ecology of Adaptive Radiation. Oxford University Press, Oxford.Google Scholar
  44. Seehausen, O., 2000. Explosive speciation rates and unusual species richness in haplochromine cichlid fishes: effects of sexual selection. Advances in Ecological Research 31: 237–274.CrossRefGoogle Scholar
  45. Simberloff, D. S., 1974. Equilibrium theory of island biogeography and ecology. Annual Review of Ecology and Systematics 5: 161–182.CrossRefGoogle Scholar
  46. Simberloff, D. S., 1978. Using island biogeographic distributions to determine if colonization is stochastic. American Naturalist 112: 713–726.CrossRefGoogle Scholar
  47. Simberloff, D. S. & B. Van Holle, 1999. Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions 1: 21–32.CrossRefGoogle Scholar
  48. Sluys, R., O. A. Timoshkin & M. Kawakatsu, 1998. A new species of giant planarian from Lake Baikal, with some remarks on character states in the Dendrocoelidae (Platyhelminthes, Tricladida, Paludicola). Hydrobiologia 383: 69–75.CrossRefGoogle Scholar
  49. Stevens, G. C., 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. American Naturalist 133: 240–256.CrossRefGoogle Scholar
  50. Sturmbauer, C., 1998. Explosive speciation in cichlid fishes of the African Great Lakes: a dynamic model of adaptive radiation. Journal of Fish Biology 53: 18–36.CrossRefGoogle Scholar
  51. Victor, R. & C. H. Fernando, 1982. Distribution of freshwater Ostracoda (Crustacea) in Southeast Asia. Journal of Biogeography 9: 281–288.CrossRefGoogle Scholar
  52. von Rintelen, T. & M. Glaubrecht, 2003. New discoveries in old lakes: three new species of Tylomelania Sarasin & Sarasin, 1897 (Gastropoda: Cerithioidea: Pachychilidae) from the Malili lake system on Sulawesi, Indonesia. Journal of Molluscan Studies 69: 3–17.CrossRefGoogle Scholar
  53. Vyvermann, W., 1991. Diatoms from Papua New Guinea. Bibliotheca Diatomologica 22: 1–225.Google Scholar
  54. Wallace, A. R., 1860. On the zoological geography of the Malay Archipelago. Journal of the Proceedings of the Linnean Society (Zoology) 4: 172–184.CrossRefGoogle Scholar
  55. White, C. M. & M. Bruce, 1986. The birds of Wallacea. Checklist No. 7. British Ornithologists Union, London.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Andrew J. Bramburger
    • 1
  • Paul B. Hamilton
    • 2
  • Peter E. Hehanussa
    • 3
  • G. Douglas Haffner
    • 1
  1. 1.Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorCanada
  2. 2.Research DivisionCanadian Museum of NatureOttawaCanada
  3. 3.Indonesian Institute of SciencesKompleks LIPICibinong West JavaIndonesia

Personalised recommendations