Using Thermal Gradients for Actuation in the Nanoscale

  • E. R. Hernández
  • R. Rurali
  • A. Barreiro
  • A. Bachtold
  • T. Takahashi
  • T. Yamamoto
  • K. Watanabe
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 13)

Abstract

In this paper we will argue that temperature gradients show great potential to induce controlled motion of nanoscaled objects, and could be used in the design of novel nano machines performing useful tasks in that scale. The well known phenomenon of thermal electromigration is a manifestation of this effect; a temperature gradient along a conductor induces the migration of charge carriers towards the cool end of the conductor, and thus a charge current is produced. Examples of experiments and simulations will be shown where it is demonstrated that the same effects can achieve the controlled migration of larger objects, such as clusters, fullerenes and nanotubes, and ideas on how to harness and exploit these effects in nano-electromechanical systems (NEMS) will be put forward.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Barreiro, R. Rurali, E.R. Hernández, J. Moser, T. Pichler, L. Forró, A. Bachtold, Science 320, 775 (2008).PubMedCrossRefADSGoogle Scholar
  2. 2.
    P.G. Collins, M.S. Arnold, P. Avouris, Science 292, 706 (2001).PubMedCrossRefADSGoogle Scholar
  3. 3.
    P.G. Collins, M. Hersham, M. Arnold, R. Martel, P. Avouris, Phys. Rev. Lett. 86, 3128 (2001).PubMedCrossRefADSGoogle Scholar
  4. 4.
    B. Bourlon, D.C. Glattli, B. Plaçais, J.M. Berroir, C. Miko, L. Forró, A. Bachtold, Phys. Rev. Lett. 92, 026804 (2004).PubMedCrossRefADSGoogle Scholar
  5. 5.
    G.E. Begtrup, K.G. Ray, B.M. Kessler, T.D. Yuzvinsky, H. García, A. Zettl, Phys. Rev. Lett. 99, 155901 (2007).PubMedCrossRefADSGoogle Scholar
  6. 6.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988).CrossRefADSGoogle Scholar
  7. 7.
    R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, M.S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001).CrossRefADSGoogle Scholar
  8. 8.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, (1987).MATHGoogle Scholar
  9. 9.
    P.A.E. Schoen, J.H. Walther, S. Arcidiacono, D. Poulikakos, P. Koumoutsakos, Nano Lett. 6, 1910 (2006).PubMedCrossRefGoogle Scholar
  10. 10.
    P.A.E. Schoen, J.H. Walther, D. Poulikakos, P. Koumoutsakos, Appl. Phys. Lett. 90, 253116 (2007).CrossRefADSGoogle Scholar
  11. 11.
    P.K. Schelling, S.R. Phillpot, P. Keblinski, Appl. Phys. Lett. 80, 2484 (2002).CrossRefADSGoogle Scholar
  12. 12.
    D.W. Brenner, Phys. Rev. B 42, 9458 (1990).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • E. R. Hernández
    • 1
  • R. Rurali
    • 2
  • A. Barreiro
    • 3
  • A. Bachtold
    • 3
  • T. Takahashi
    • 4
  • T. Yamamoto
    • 4
  • K. Watanabe
    • 4
  1. 1.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de BellaterraBarcelonaSpain
  2. 2.Departament d'Enginyeria ElectrònicaUABBarcelonaSpain
  3. 3.Centre d'Investigacions en Nanociencia i NanotecnologiaCentro Nacional de Micro-electrónica, Campus de BellaterraBarcelonaSpain
  4. 4.Department of PhysicsTokyo University of ScienceShinjuku-ku, TokyoJapan

Personalised recommendations