Noncommutative Geometry and Transcendental Physics

  • Jean Petitot
Part of the The Western Ontario Series In Philosophy of Science book series (WONS, volume 74)


In our neo-transcendental approach, physical theories are built up from a categorial structure that is mathematically interpreted (what Kant called the “mathematical construction of categories”). The interpretation of physical categories provided by noncommutative geometry is presented in this perspective.


Gauge Theory Gauge Boson Dirac Operator Clifford Algebra Goldstone Boson 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, R., Marsden, J. 1978. Foundations of Mechanics, Benjamin Cummings, New-York, Reading.Google Scholar
  2. Arnold, V., 1976, M éthodes mathématiques de la mécanique classique, Moscou, Mir.Google Scholar
  3. Arnowitt, R., Deser, S., Misner, C. W., 1962. “The Dynamics of General Relativity”, Gravitation: an introduction to current research, L. Witten (ed.), New York, Wiley, 227–265. ArXiv:gr-qc/0405109.Google Scholar
  4. Baez, J. (ed), 1994. Knots and Quantum Gravity, Oxford, Clarendon Press.Google Scholar
  5. Brading, K., Castellani, E. (eds), 2003. Symmetries in Physics. Philosophical Reflections, Cambridge, Cambridge University Press.Google Scholar
  6. Carlip, S., 2001. “Quantum Gravity: a Progress Report”, Report on Progress in Physics, 64, ArXiv:gr-qc/0108040v1.Google Scholar
  7. Chamseddine, A., Connes, A., 1996. “Universal formulas for noncommutative geometry actions”, Phys. Rev. Letters, 77, 24, 4868–4871.CrossRefGoogle Scholar
  8. Connes, A., 1990. Géométrie non commutative, Paris, InterEditions.Google Scholar
  9. Connes, A., 1996. “Gravity Coupled with Matter and the Foundation of Noncommutative Geometry”, Commun. Math. Phys., 182, 155–176. ArXiv:hep-th/9603053.CrossRefGoogle Scholar
  10. Connes, A., Kreimer, D., 1998. Hopf Algebras, Renormalization and Noncommutative Geometry, ArXiv:hep-th/9808042 v1.Google Scholar
  11. Connes, A., Kreimer, D., 1999. “Renormalization in quantum field theory and the Riemann-Hilbert problem”, J.High Energy Phys., 09, 024 (1999). ArXiv:hep-th/9909126.Google Scholar
  12. Connes, A., 2000. Noncommutative Geometry Year 2000, ArXiv:math.QA/0011193 v1.Google Scholar
  13. Connes, A., 2000. A Short Survey of Noncommutative Geometry, ArXiv:hep-th/0003006 v1.Google Scholar
  14. Connes, A., Marcolli, M., 2008. Noncommutative Geometry, Quantum Fields and Motives (forthcoming).Google Scholar
  15. Friedman, M., 1985. “Kant's Theory of Geometry”, The Philosophical Review, XCIV, 4, 455–506.CrossRefGoogle Scholar
  16. Friedman, M., 1999. Dynamics of Reason, Stanford, CA, CSLI Publications.Google Scholar
  17. Grünbaum, A., 1973. Philosophical Problems of Space and Time, Dordrecht Boston MA, Reidel.Google Scholar
  18. Hilbert, D., 1915. “Die Grundlagen der Physik (Erste Mitteilung)”, K önigliche Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, Nachrichten, 395–407.Google Scholar
  19. Iochum, B., Kastler, D., Schücker, T., 1996. On the universal Chamseddine-Connes action. I. Details of the action computation, hep-th/9607158.Google Scholar
  20. Itzykson, C., Zuber, J.B., 1985. Quantum Field Theory, Singapour, Mc Graw-Hill.Google Scholar
  21. Jones, V., Moscovici, H., 1997. “Review of Noncommutative Geometry by Alain Connes”, Notice of the AMS, 44, 7, 792–799.Google Scholar
  22. Kaku, M., 1988. Introduction to Superstrings, New York, Springer.Google Scholar
  23. Kant, I., 1786. Metaphysische Anfangsgründe der Naturwissenschaft, Kants gesammelte Schriften, Band IV, Preussische Akademie der Wissenschaften, Berlin, Georg Reimer, 1911.Google Scholar
  24. Kastler, D., Schücker, T., 1994. The Standard Model à la Connes-Lott, hep-th/9412185.Google Scholar
  25. Kastler, D., 1995. “The Dirac operator and gravitation”, Commun. Math. Phys., 166, 633–643.CrossRefGoogle Scholar
  26. Kastler, D., [NCG]. Noncommutative geometry and basic physics, Centre de Physique Théorique, Marseille-Luminy.Google Scholar
  27. Landi, G., Rovelli, C., 1997. “General Relativity in Terms of Dirac Eigenvalues”, Phys. Rev. Lett., 78, 3051–3054 (see also on the Web “Gravity from Dirac Eigenvalues”).CrossRefGoogle Scholar
  28. Le Bellac, M., 1988. Des phénomènes critiques aux champs de jauge, Paris, InterEditions – C.N.R.S.Google Scholar
  29. Majer, U., Sauer, T., 2004. “Hilbert's ‘World Equations’ and His Vision of a Unified Science”, arXiv:physics/0405110v1.Google Scholar
  30. Manin, Y. I., 1988. Gauge Field Theory and Complex Geometry, Berlin/New York, Springer.Google Scholar
  31. Marsden, J., 1974. Applications of Global Analysis in mathematical Physics, Berkeley, Publish or Perish.Google Scholar
  32. Martin, C.P., Gracia-Bondia, J.M., Várilly, J.C., 1997. “The Standard Model as a noncommutative geometry: the low energy regime”, hep-th/9605001 v2.Google Scholar
  33. Misner, C.W., Thorne, K.S., Wheeler, J.A., 1973. Gravitation, San Francisco CA, Freeman.Google Scholar
  34. Petitot, J., 1990a. “Logique transcendantale, Synthétique a priori et Herméneutique mathématique des Objectivités”, Fundamenta Scientiæ, (special issue in honor of Ludovico Geymonat), 10, 1, 57–84.Google Scholar
  35. Petitot, J., 1990b, “Logique transcendantale et Herméneutique mathématique : le problème de l’unité formelle et de la dynamique historique des objectivités scientifiques”, Il pensiero di Giulio Preti nella cultura filosofica del novecento, 155–172, Franco Angeli, Milan.Google Scholar
  36. Petitot, J., 1991a. La Philosophie transcendantale et le problème de l'Objectivité, Entretiens du Centre Sèvres, (F. Marty ed.), Paris, Editions Osiris.Google Scholar
  37. Petitot, J., 1991b. “Idéalités mathématiques et Réalité objective. Approche transcendantale”, Hom-mage à Jean-Toussaint Desanti, (G. Granel ed.), 213–282, Editions TER, Mauvezin.Google Scholar
  38. Petitot, J., 1992a. “Actuality of Transcendental Aesthetics for Modern Physics”, 1830–1930 : A Century of Geometry, (L. Boi, D. Flament, J.-M. Salanskis eds.), Berlin/New York, Springer.Google Scholar
  39. Petitot, J., 1992b. “Continu et Objectivité. La bimodalité objective du continu et le platonisme transcendantal”, Le Labyrinthe du Continu, (J.-M. Salanskis, H. Sinaceur eds.), 239–263, Paris, Springer.Google Scholar
  40. Petitot, J., 1994. “Esthétique transcendantale et physique mathématique”, Neukantianismus. Per-spektiven und Probleme (E.W. Orth, H. Holzhey Hrsg.), 187–213, Würzburg, Königshausen & Neumann.Google Scholar
  41. Petitot, J., 1995. “Pour un platonisme transcendantal”, L'objectivité mathématique. Platonisme et structures formelles (M. Panza, J-M. Salanskis eds.), 147–178, Paris, Masson.Google Scholar
  42. Petitot, J., 1997. “Objectivité faible et Philosophie transcendantale”, Physique et Réalité, in honor of B. d’Espagnat, (M. Bitbol, S. Laugier eds.), Paris, DIDerot Editeur, 201–236.Google Scholar
  43. Petitot, J., 2002. “Mathematical Physics and Formalized Epistemology”, Quantum Mechanics, Mathematics, Cognition and Action (M. Mügur-Schächter, A. van der Merwe eds.), Dordrecht, Kluwer, 73–102.Google Scholar
  44. Petitot, J., 2006. “Per un platonismo trascendentale”, Matematica e Filosofia, PRISTEM/Storia 14–15, (S. Albeverio, F. Minazzi eds.), University Luigi Bocconi, Milan, 97–143.Google Scholar
  45. PQG, 1988. Physique quantique et géométrie (Colloque André Lichnerowicz, D. Bernard, Y. Choquet-Bruhat eds.), Paris, Hermann.Google Scholar
  46. Quigg, C., 1983. Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, Reading MA, Benjamin-Cummings.Google Scholar
  47. Seiberg, N., Witten, E., 1999. “String theory and noncommutative geometry”, J. High Energy Physics, JHEP09(1999)032.Google Scholar
  48. Souriau, J.M., 1975. Géométrie symplectique et physique mathématique, Coll. Internat. du C.N.R.S., 237, Paris.Google Scholar
  49. Weinstein, A., 1977. Lectures on Symplectic Manifolds, C.B.M.S., Conf. Series, Am. Math. Soc., 29, ProvIDence RI.Google Scholar
  50. Weyl, H., 1922. Space – Time – Matter, New York, Dover.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Jean Petitot

There are no affiliations available

Personalised recommendations