Advertisement

Dynamics and Transport in the Middle Atmosphere Using Remote Sensing Techniques from Ground and Space

  • Alain Hauchecorne
  • Philippe Keckhut
  • Marie-Lise Chanin
Chapter

Abstract

The middle atmosphere is generally defined as the region of the atmosphere located between the tropopause (8–17 km) and the mesopause (85–90 km). It includes the stratosphere, where the ozone layer takes place, and the mesosphere. The temperature and wind structure of this region is mainly driven by radiative processes (mainly on of solar radiation by ozone and infrared cooling by CO2) and dynamic processes (propagation and breaking of planetary and gravity waves, meridional circulation from equator to poles in the stratosphere, and from summer pole to winter pole in the mesosphere). A good knowledge of these processes is required to understand the transport of constituents playing a role in the photochemistry of stratospheric ozone and the heat budget of the middle atmosphere determining its thermal structure. In-situ measurements at these high altitudes are not easy to perform and several remote sensing techniques have been developed to observe these regions from the ground and from space, among them infrasound measurement is a promising one. This article presents the main characteristics of dynamics and transport in the middle atmosphere and gives a review of the remote sensing techniques used to observe this region in complement to infrasound detection: lidars, radars, infrared and microwave sounders, and GNSS radio-occultation.

Keywords

GNSS Radio-Occultation Mesosphere Tropopause 

References

  1. Allen SJ, Vincent RA (1995) Gravity wave activity in lower atmosphere: Seasonal and latitudinal variations. J Geophys Res 100:1327–1350CrossRefGoogle Scholar
  2. Baldwin MP, Gray LJ, Dunkerton TJ et al (2001) The Quasi-Biennial Oscillation. Rev Geophys 39:179–229CrossRefGoogle Scholar
  3. Baldwin MP, Hirooka T, O’Neill A et al (2003) Major stratospheric warming in the southern hemisphere in 2002: dynamical aspects of the ozonehole split. SPARC Newsletter:20, 24–26Google Scholar
  4. Bencherif H (1996) Observations de l’activité dynamique dans la moyenne atmosphère, par sondage LIDAR, au dessus du site de l’île de la Réunion, 20.8°S 55.5°E. Thèse de Doctorat de l’Université Paris 6, ParisGoogle Scholar
  5. Brasseur GP, Solomon S (2006) Aeronomy of the middle atmosphere: chemistry and physics of the stratosphere and mesosphere, 3rd edn. Springer, Dordrecht, NetherlandsGoogle Scholar
  6. Blanc E, Le Pichon A, Ceranna L, Farges T, Marty J, Herry P (2010) Global scale monitoring of acoustic and gravity waves for the study of the atmospheric dynamics. This volume, pp. 641–658Google Scholar
  7. Chanin ML, Garnier A, Hauchecorne A, Porteneuve J (1989) A Doppler Lidar for measuring winds in the middle atmosphere. Geophys Res Let 16:1273–1276CrossRefGoogle Scholar
  8. Charney JG, Drazin PG (1961) Propagation of planetary scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83–109CrossRefGoogle Scholar
  9. Drob DP, Meier RR, Picone JM, Garcés MM (2010) Inversion of infrasound signals for passive atmospheric remote sensing. This volume, pp. 695–726Google Scholar
  10. Dunkerton TJ (1997) The role of gravity waves in the quasi-biennial oscillation. J Geoph Res 102:26053–2607CrossRefGoogle Scholar
  11. Dunkerton TJ, Baldwin MP (1991) Quasi-biennial Modulation of Planetary-Wave Fluxes in the Northern Hemisphere Winter. J Atmos Sci 48:1043–1061CrossRefGoogle Scholar
  12. Fiocco G, Grams G (1964) Observations of the aerosol layer at 20 km by optical radar. J Atmos Sci 21:323–324CrossRefGoogle Scholar
  13. Fleming EL, Chandra S, Schoeberl MR, Barnett JJ (1988) Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0-120 km. NASA Tech Memo 100697Google Scholar
  14. Forbes JM (1982) Atmospheric Tides, 1, Model Description and Results for the Solar Diurnal Component. J Geophys Res 87:5222–5240CrossRefGoogle Scholar
  15. Garcia RR, Dunkerton TJ, Lieberman RS, Vincent RA (1997) Climatology of the semiannual oscillation, of the tropical middle atmosphere, J. Geophys. Res 102:26019–26032Google Scholar
  16. Gelman ME, Miller AJ, Long CS et al (2000) The transition from SSU to AMSU data in CPC stratospheric analyses. SPARC Newslett 15:17–18Google Scholar
  17. Godin S, Mégie G, Pelon J (1989) Systematic lidar measurements of the stratospheric ozone vertical distribution. Geophys Res Lett 16:547–550CrossRefGoogle Scholar
  18. Hauchecorne A, Chanin ML, Wilson R (1987) Mesospheric temperature inversion and gravity wave breaking. Geophys Res Lett 14:933–936CrossRefGoogle Scholar
  19. Hauchecorne A, Chanin ML (1980) Density and temperature profiles obtained by lidar between 30 and 70 km. Geophys Res Lett 7:564–568CrossRefGoogle Scholar
  20. Hauchecorne A, Chanin ML (1983) Mid-latitude observations of planetary waves in the middle atmosphere during the winter of 1981–1982. J Geophys Res 88:3843–3849CrossRefGoogle Scholar
  21. Hertzog A, Souprayen, Hauchecorne A (2001) Measurements of gravity waves activity in the lower stratosphere by DoppCler lidar. J Geophys Res 106:7879–7890CrossRefGoogle Scholar
  22. Hirota I, Hirooka T (1983) Normal mode Rossby waves observed in the upper stratosphere. Part I: First symmetric modes of zonal wavenumbers 1 and 2. J Atmos Sci 41:1253–1267CrossRefGoogle Scholar
  23. Hirooka T (2000) Normal mode Rossby waves as revealed by UARS/ISAMS observations. J Atmos Sci 57:1277–1285CrossRefGoogle Scholar
  24. Hocking, W.K. (1997) Strengths and limitations of MST radar measurements of middle-atmosphere winds. Ann. Geophysicae 15:1111–1122Google Scholar
  25. Holton JR (1979) An introduction to Dynamic Meteorology, 2nd edn. Academic Press, LondonGoogle Scholar
  26. Holton JR (1982) The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J Atmos Sci 40:2497–2507CrossRefGoogle Scholar
  27. Holton JR, Haynes PH, McIntyre ME et al (1995) Stratosphere-troposphere exchange. Rev Geophys 33:405–439CrossRefGoogle Scholar
  28. Holton JR, Lindzen RS (1972) An updated theory for the quasi-biennial cycle of the tropical stratosphere. J Atmos Sci 29:1076–1080CrossRefGoogle Scholar
  29. Keckhut P, Chanin ML, Hauchecorne A (1990) Stratospheric temperature measurements using Raman lidar. Appl Optics 29:5182–5186CrossRefGoogle Scholar
  30. Keckhut P, Hauchecorne A, Chanin ML (1993) A critical review of the data base acquired for the long term surveillance of the middle atmosphere by Rayleigh lidar. J Atm Ocean Tech 10:850–867CrossRefGoogle Scholar
  31. Keckhut P, Gelman ME, Wild JD et al (1996) Semi-diurnal and diurnal temperature tides (30–55 km): climatology and Effect on UARS-lidar data comparisons. J Geophys Res 101:10299–10310CrossRefGoogle Scholar
  32. Kishore P, Namboothiri SP S, Igarashi K et al (2002) MF radar observations of mean winds and tides over Poker Flat, Alaska (65.1_ N, 147.5_ W). Annales Geophysicae 20:679–690CrossRefGoogle Scholar
  33. Kursinski ER, Hajj GA, Schofield JT et al (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465CrossRefGoogle Scholar
  34. Labitzke K (1977) Inter-annual variability of the winter stratosphere in the northern hemisphere. Mon Weather Rev 105:762–770CrossRefGoogle Scholar
  35. Leblanc T, Hauchecorne A (1997) Recent Observations of Mesospheric Temperature Inversions. J Geophys Res 102:19471–19482CrossRefGoogle Scholar
  36. Le Pichon A, Vergoz J, Cansi Y, Ceranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. This volume, pp. 623–640Google Scholar
  37. Lindzen RS (1966) On the theory of the diurnal tide. Mon Wea Rev 94:295–301CrossRefGoogle Scholar
  38. Lindzen RS (1981) Turbulence and Stress Owing to Gravity Wave and Tidal Breakdown. J Geophys Res 86:9707–9714CrossRefGoogle Scholar
  39. McCormick MP, Swissler TJ, Chu WP, Fuller WH Jr (1978) Post-vocanic stratospheric aerosol decay as measured by lidar. J Atmos Sci 35:1296–1303CrossRefGoogle Scholar
  40. McIntyre ME (1992) Atmospheric Dynamics: Some Fundamentals with Observational Implications. Proceedings of Int School Phys Enrico Fermi CXV Course, JC Gille and G Visconti Eds, North-Holland, InGoogle Scholar
  41. Madden RA, Labitzke K (1981) A free Rossby wave in the troposphere and stratosphered during January 1979. J Geophys Res 86:1247–1254CrossRefGoogle Scholar
  42. Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J. Atmos Sci 28:1479–1494CrossRefGoogle Scholar
  43. Meriwether W, Gardner CS (2000) A Review of the Mesosphere Inversion Layer Phenomena. J Geophys Res 105:12405–12416CrossRefGoogle Scholar
  44. Mote PW, Rosenlof KH, McIntyre ME et al (1996) An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J Geophys Res 101:3989–4006CrossRefGoogle Scholar
  45. Nash J, Brownscombe JL (1983) Validation of the Stratospheric Sounding Unit. Adv Space Res 2:59–6CrossRefGoogle Scholar
  46. Naujokat B (1986) An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J Atmos Sci 43:1873–1877CrossRefGoogle Scholar
  47. Nedeljkovic N, Hauchecorne A, Chanin ML (1993) Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Transactions on Geoscience and Remote Sensing 31:91–101CrossRefGoogle Scholar
  48. Pendlebury D, Shepherd TG, Pritchard M, McLandress C (2008) Normal mode Rossby waves and their effects on chemical composition in the late summer stratosphere. Atmos Chem Phys 8:1925–1935CrossRefGoogle Scholar
  49. Randel WJ, Gille JC, Lahoz AE (1993) Stratospheric transport from tropics to middle latitudes by planetary wave mixing. Nature 365:533–535CrossRefGoogle Scholar
  50. Ray, E. A., M. J. Alexander, and J. R. Holton (1998), An analysis of the structure and forcing of the equatorial semiannual oscillation in zonal wind, J. Geophys. Res., 103(D2), 1759–1774.Google Scholar
  51. Reed RJ (1966) Zonal wind behavior in the equatorial stratosphere and lower mesosphere. J Geophys Res 71:4223–4233Google Scholar
  52. Rocken C, Kuo YH, Schreiner W et al (2000) COSMIC System Description. Terres Atmos Oceanic Sci 11:21–52Google Scholar
  53. Salby ML (1984) Survey of Planetary-Scale Traveling Waves: The State of Theory and Observations. Rev Geophys 22:209–236CrossRefGoogle Scholar
  54. Salby M, Sassi F, Callaghan P et al (2002) Mesospheric inversions and their relationship to planetary wave structure. J Geophys Res 107. doi: 10.1029/2001JD000756Google Scholar
  55. Schmidlin FJ (1976) Temperature Inversions near 75 km. Geophys Rev Lett 3:173–176CrossRefGoogle Scholar
  56. Schoeberl MR (1978) Stratospheric warmings: Observations and theory. Rev Geophys Space Phys 16:521–538CrossRefGoogle Scholar
  57. Shepherd TG (2000) The middle atmosphere. J Atmos Terr Sol Phys 62:1587–1601CrossRefGoogle Scholar
  58. Souprayen C, Garnier A, Hertzog A, Hauchecorne A (1999) Doppler wind lidar for stratospheric measurements. Part 1: Instrumental setup-validation-first climatological results. Appl Optics 38:2410–2431CrossRefGoogle Scholar
  59. Stoffelen A, Pailleux J, Källén E et al (2005) The atmospheric dynamics mission for global wind field measurement. Bull Amer Meteor Soc 86:73–87CrossRefGoogle Scholar
  60. Swenson GR, Gardner CS (1998) Analytical models for the responses of the mesospheric OH* and Na layers to atmospheric gravity waves. J Geophys Res 103: 6271–6294Google Scholar
  61. Tsuda T, Kato S, Yokoi T et al (1990) Gravity waves in the mesosphere observed with the middle and upper atmospheric radar. Radio Sci 26:1005–1018CrossRefGoogle Scholar
  62. Venkat Ratnam MA, Narendra Babu A, Jagannadha Rao VVM et al (2008) MST radar and ­radiosonde observations of inertia-gravity wave climatology over tropical stations: Source mechanisms. J Geophys Res 113 D07109 doi:10.1029/2007JD008986Google Scholar
  63. Wickert J, Schmidt T, Beyerle G et al (2004) The radio occultation experiment aboard CHAMP: operational data analysis and validation of atmospheric profiles. J Meteor Soc Jpn 82:381–395CrossRefGoogle Scholar
  64. Wilson R, Chanin ML, Hauchecorne A (1991) Gravity waves in the middle atmosphere by Rayleigh Lidar, Part. 2: Climatology. J Geophys Re 96:5169–5183CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alain Hauchecorne
    • 1
  • Philippe Keckhut
  • Marie-Lise Chanin
  1. 1.Université Versailles-Saint Quentin, CNRS/INSU, LATMOS-IPSLVerrières-le-Buisson, CedexFrance

Personalised recommendations