Silver Nanoparticles

Environmental and Human Health Impacts
  • R. R. Khaydarov
  • R. A. Khaydarov
  • Y. Estrin
  • S. Evgrafova
  • T. Scheper
  • C. Endres
  • S. Y. Cho
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ACGIH (1991) Documentation of the Threshold Limit Values and Biological Exposure Indices, 6th edn, American Conference of Governmental Industrial Hygienists, Cincinnati, OH.Google Scholar
  2. 2.
    Allsopp, M., Walters, A., and Santillo, D. (2007) Nanotechnologies and Nanomaterials in Electrical and Electronic goods: A Review of Uses and Health Concerns, Greenpeace Research Laboratories Technical Note 09/2007 (December 2007).Google Scholar
  3. 3.
    Bogle, K.A., Dhole, S.D., and Bhoraskar, V.N. (2006) Silver nanoparticles: synthesis and size control by electron irradiation, Nanotechnology 17, 3204–3208.CrossRefADSGoogle Scholar
  4. 4.
    Bönnemann, H., and Richards, R. (2001) Nanoscopic metal particles — synthetic methods and potential applications, Eur J Inorg Chem 10, 2455–2480.CrossRefGoogle Scholar
  5. 5.
    Braydich-Stolle, L., Hussain, S., Schlager, J., and Hofmann M.-C. (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells, Toxicol Sci 88(2), 412–419.PubMedCrossRefGoogle Scholar
  6. 6.
    Buzea, C. et al. (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), MR17–MR71.CrossRefPubMedGoogle Scholar
  7. 7.
    Estrin, Y., Khaydarov, R.R., Khaydarov, R.A, Gapurova, O., Cho, S., Scheper, T., and Endres, C. (2008) Antimicrobial and antibacterial effects of silver nanoparticles synthesized by novel electrochemical method. Nanoscience and Nanotechnology, ICONN 2008, Proceedings of 2008 International Conference on Nanoscience and Nanotechnology, 25–29 February 2008, Melbourne, Victoria, Australia, 44–47.Google Scholar
  8. 8.
    Grodzik, M., and Sawosz, E. (2006) The influence of silver nanoparticles on chicken embryo development and bursa of Fabricius morphology, J Anim Feed Sci 15(Suppl 1), 111–114.Google Scholar
  9. 9.
    Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T., and Schlager, J.J. (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicol In Vitro 19, 975–983.PubMedCrossRefGoogle Scholar
  10. 10.
    Khaydarov, R.R., Khaydarov, R.A., Gapurova, O., Estrin, Y., and Scheper, T. (2008) Electrochemical method of synthesis of silver nanoparticles. J Nanopart Res. Doi:10.1007/ s11051-008-9513-x.Google Scholar
  11. 11.
    Klasen H. (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2), 131–138.PubMedCrossRefGoogle Scholar
  12. 12.
    Lee, H.J., and Jeong, S.H. (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics, Text Res J 75, 551–556.CrossRefGoogle Scholar
  13. 13.
    Lee, I., Han, S.W., and Kim, K. (2001) Simultaneous preparation of SERS-active metal colloids and plates by laser ablation, J Raman Spectrosc 32, 947–952.CrossRefADSGoogle Scholar
  14. 14.
    Lewis, L.N. (1993) Chemical catalysis by colloids and clusters, Chem Rev 93, 2693– 2730.CrossRefGoogle Scholar
  15. 15.
    Lewinski, N., Colvin, V., and Drezek, R. (2008) Cytotoxicity of nanoparticles, Small 4(1), 26–49.PubMedCrossRefGoogle Scholar
  16. 16.
    Li, Y., Wu, X., and Ong, B.S. (2005) Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics, J Am Chem Soc 127, 3266–3267PubMedCrossRefGoogle Scholar
  17. 17.
    Lok, C.N. et al. (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4), 527–534.PubMedCrossRefGoogle Scholar
  18. 18.
    Long, D., Wu, G., and Chen, S. (2007) Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation, Radiat Phys Chem 76(7), 1126–1131.CrossRefADSGoogle Scholar
  19. 19.
    Mallick, K., Witcomb, M.J., and Scurrell, M.S. (2004) Polymer stabilized silver nanoparticles: a photochemical synthesis route, J Mater Sci 39, 4459–4463.CrossRefADSGoogle Scholar
  20. 20.
    Morones, J.R. et al. (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353.CrossRefADSGoogle Scholar
  21. 21.
    Murphy, C.J., Sau, T.K., Gole, A.M., et al. (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J Phys Chem B 109, 13857–13870.PubMedCrossRefGoogle Scholar
  22. 22.
    Navaladian, S., Viswanathan, B., Viswanath, R.P., et al. (2007) Thermal decomposition as route for silver nanoparticles, Nanoscale Res Lett 2, 44–48.CrossRefADSGoogle Scholar
  23. 23.
    Niemeyer, C.M. (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew Chem Int Ed 40(22), 4128–4158.CrossRefGoogle Scholar
  24. 24.
    Ratte, H.T. (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18(1), 89–108.CrossRefGoogle Scholar
  25. 25.
    Ruparelia, J.P. et al. (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716.PubMedCrossRefGoogle Scholar
  26. 26.
    Salata, O.V. (2004) Application of nanoparticles in biology and medicine, J Nanobiotechnol 2, 1–12.CrossRefGoogle Scholar
  27. 27.
    Sarkar, S. et al. (2007) Facile synthesis of silver nano particles with highly efficient anti-microbial property, Polyhedron 26, 4419–4426.CrossRefGoogle Scholar
  28. 28.
    Smith, I.C., and Carson, B.L. (1977) Trace Metals in the Environment, Vol 2—Silver, Ann Arbor Science, Ann Arbor, MI.Google Scholar
  29. 29.
    Soete, D.D., Gijbels, R., and Hoste, J. (1972) Neutron Activation Analysis, Wiley Interscience, New York.Google Scholar
  30. 30.
    Solov'ev, A.Y., Potekhina, T.S., Chernova, I.A., et al. (2007) Track membrane with immobilized colloid silver particles, Russ J Appl Chem 80(3), 438–442.CrossRefGoogle Scholar
  31. 31.
    Soto, K.F. et al.(2005) Comparative in vitro cytotoxicity assessment of some manufacturednanoparticulate materials characterized by transmissionelectron microscopy. J Nanopart Res 7, 145–169.CrossRefGoogle Scholar
  32. 32.
    Zeng, F., Hou, C., Wu, S., Liu, X., Tong, Z., and Yu, S. (2007) Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities, Nanotechnology 18(5), 055605, 1–8.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • R. R. Khaydarov
    • 1
  • R. A. Khaydarov
    • 1
  • Y. Estrin
    • 2
  • S. Evgrafova
    • 3
  • T. Scheper
    • 4
  • C. Endres
    • 4
  • S. Y. Cho
    • 5
  1. 1.Institute of Nuclear PhysicsUlugbekUzbekistan
  2. 2.ARC Centre of Excellence for Design in Light Metals Department of Materials EngineeringMonash University CSIRO Division of Materials Science and Engineering ClaytonVictoriaAustralia
  3. 3.V.N. Sukachev Institute of Forest SB RASKrasnoyarskRussia
  4. 4.Institute of Technical ChemistryLeibniz UniversityHannoverGermany
  5. 5.Yonsei UniversitySeoulSouth Korea

Personalised recommendations