Visualization and Transport of Quantum Dot Nanomaterials in Porous Media

  • C. J. G. Darnault
  • S. M. C. Bonina
  • B. Uyusur
  • P. T. Snee
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)


This paper presents our research on the visualization and transport phenomena of quantum dot nanomaterials in porous media. It includes the development of a non-intrusive, high spatial and temporal resolution method to visualize transport and measure quantum dot nanomaterials concentration in porous media, allowing to characterize the mechanisms that control the transport, or lack of mobility, of engineered nanomaterials — quantum dots — in subsurface complex and heterogeneous environment. The visualization technique used to explore the transport of quantum dot nanomaterials is a toolbox that allows to characterize a wide range of flow and transport phenomena due to mesoscale heterogeneities. The characterization of these flow and transport phenomena includes the visualization and/or quantification of flow, fluid content and nanoparticle concentrations. The visualization technique selected to investigate transport of quantum dot nanomaterials in two-dimensional variably saturated porous media is a non-intrusive method based on fluorescence resulting from the quantum dots optical properties. The visualization procedure consists of exciting fluorescent quantum dots in porous media by using a UV light located in the front of the chamber and in characterizing the water content with the light transmitted through the porous media by using light emitted devices (LEDs) as a light source placed in the back of the chamber. The visualization, calibration and image analysis are performed using an image software. Experiments investigating quantum dot nanomaterials transport in unsaturated zone demonstrates the effects of preferential flow and gas-water interfaces on the transport of quantum dot nanomaterials through the vadose zone.


Porous Medium Vadose Zone Preferential Flow Saturated Porous Medium Calibration Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biswas, P., and Wu, C.-Y., 2005, Nanoparticles and the Environment, Journal of Air and Waste Management Association, 55:708–746.Google Scholar
  2. 2.
    Brus, L. E., 1983, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites, Journal of Chemical Physics, 79:5566.CrossRefADSGoogle Scholar
  3. 3.
    Cheng, X., Kan, A. T., and Tomson, M. B., 2005, Study of C60 transport in porous media and the effect of sorbed C60 on naphtalene transport, Journal of Material Research, 20(12):3244–3254.CrossRefADSGoogle Scholar
  4. 4.
    Colvin, V. L., 2003, The potential environmental impact of engineered nanomaterials, Nature Biotechnology, 21(10):1166–1170.PubMedCrossRefGoogle Scholar
  5. 5.
    Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M. G., 1997, (CdSe)ZnS core-shell quantum dots: synthesis and optical and structural characterization of a size series of highly luminescent materials, Journal of Physical Chemistry B, 101:9463.CrossRefGoogle Scholar
  6. 6.
    Darnault, C. J. G., Steenhuis, T. S., Kim, Y. J., Garnier, P., Jenkins, M., Ghiorse, W. C., Baveye, P. C., and Parlange, J.-Y., 2004, Preferential flow and the transport of Cryptosporidium parvum oocysts through the vadose zone: experiments and modeling, Vadose Zone Journal, 3:262–270.CrossRefGoogle Scholar
  7. 7.
    Darnault, C. J. G., DiCarlo, D. A., Bauters, T. W. J, Jacobson, A. R., Throop, J. A., Steenhuis, T. S., Parlange, J.-Y., and Montemagno C. D., 2001, Measurement of fluid contents by light transmission in transient three-phase oil-water-air systems in sand, Water Resources Research, 37:1859–1868.CrossRefADSGoogle Scholar
  8. 8.
    Ekimov, A. I., and Onushchenko, A. A., 1984, Size Quantization of the electron-energy spectrum in a microscopic semiconductor crystal, JETP Letters, 40:1136.ADSGoogle Scholar
  9. 9.
    Faybishenko, B., Bandurraga. M., Conrad, M., Cook, P., Eddy-Dilek, C., Everett, L., FRx Inc. of Cincinnati, Hazen, T., Hubbard, S., Hutter, A. R., Jordan, P., Keller, C., Leij, F. J., Loaiciga, N., Majer, E. L., Murdoch, L., Renehan, S., Riha, B., Rossabi, J., Rubin, Y., Simmons, A., Weeks, S., and Williams, C. V., 2000, Vadose Zone Characterization and Monitoring. Current Technologies, Applications, and Future Developments, pp 133–509, in Vadose Zone Science and Technology, Brian B, Looney and Ronald W. Falta eds., Volume 1, Battelle Press, Columbus, OH.Google Scholar
  10. 10.
    Guzman, K. A., Taylor, M. R., and Banfield, J. F., 2006, Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environmental Science and Technology 40(5), 1401–1407.PubMedCrossRefGoogle Scholar
  11. 11.
    Hardman, R., 2006, A toxicology review of quantum dots: toxicity depends on physicochemical and environmental factors, Environmental Health Perspectives, 114:165–172.PubMedCrossRefGoogle Scholar
  12. 12.
    Hines, M. A., Guyot-Sionnest, P., 1996, Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals, Journal of Physical Chemistry, 100:468.CrossRefGoogle Scholar
  13. 13.
    Jacobsen, O. H., Moldrup, P, Larsen, C., Konnerup., L., and Petersen, L. W., 1997, Particle transport in macropores of undisturbed soil columns, Journal of Hydrology, 196:185–203.CrossRefADSGoogle Scholar
  14. 14.
    Laegdsmand, M., Moldrup, P., and De Jonge, L. W., 2007, Modelling of colloid leaching from unsaturated soil, European Journal of Science, 58:692–703.CrossRefGoogle Scholar
  15. 15.
    Lecoanet, H. F., Bottero, J. Y., Wiesner, M. R., 2004, Laboratory assessment of the mobility of nanomaterials in porous media, Environmental Science and Technology, 38:5164–5169.PubMedCrossRefGoogle Scholar
  16. 16.
    Lecoanet, H. F., and Wiesner, M. R., 2004, Velocity effects on fullerene and oxide nanoparticle deposition in porous media, Environmental Science and Technology, 38, 4377–4382.PubMedCrossRefGoogle Scholar
  17. 17.
    Looney, B., and Falta, R., 2000, Vadose Zone What It Is, Why It Matters, and How It Works, pp 3–59, in Vadose Zone Science and Technology, Brian B, Looney and Ronald W. Falta eds., Volume 1, Battelle Press, Columbus, OH.Google Scholar
  18. 18.
    Murray, C. B., Norris, D. J., Bawendi, M. G., 1993, Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites, Journal of the American Chemical Society, 115:8706.CrossRefGoogle Scholar
  19. 19.
    Nieber, J. L., 1978, The Relation of Preferential Flow to Water Quality, and its Theoretical and Experimental Quantification, pp 1–10, in Preferential Flow, Water Movement and Chemical Transport in the Environment, D.D. Bosch and K.W. King eds., Proceedings of ASAE 2nd International Symposium, Honolulu, HI. 3–5 Jan. 2001. American Society of Agricultural Engineers, St. Joseph, MI. Natural Resources Conservation Service.Google Scholar
  20. 20.
    Peng, Z. A., and Peng, X., 2001, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, Journal of the American Chemical Society, 12:183.CrossRefGoogle Scholar
  21. 21.
    Roco, M. C. and W. Baunbridge, eds., 2001, Societal implications of nanoscience and nanotechnology. National Science Foundation Report.Google Scholar
  22. 22.
    Roco, M. C., 2003, Broader societal issues of nanotechnology, Journal of Nanoparticle Research, 5:181–189CrossRefGoogle Scholar
  23. 23.
    Rossetti, R., Nakahara, S., and Brus, L. E., 1983, Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution, Journal of Chemical Physics, 79:1086.CrossRefADSGoogle Scholar
  24. 24.
    Rousseau, M., Di Pietro, L., Angulo-Jaramillo, R., Tessier, D., and Cabibel, B., 2004, Preferential transport of soil colloidal particles: physicochemical effects on particle mobilization, Vadose Zone Journal, 3:247–261.Google Scholar
  25. 25.
    Saiers, J. E., and Lenhart, J. J., 2003, Colloid mobilization and transport within unsaturated porous media under transient-flow conditions, Water Resources Research, 39:1019.CrossRefADSGoogle Scholar
  26. 26.
    Saiers, J. E., Hornberger, G. M., Gower, D. B., and Herman, J. S., 2003, The role of moving air-water interfaces in colloid mobilization within the vadose zone, Geophysical Research Letters, 30:2083.CrossRefADSGoogle Scholar
  27. 27.
    Sayre, P., June 30, 2007, Nanomaterials and the Environment. Priority Research Areas
  28. 28.
    Tindall, J. A., and Kunkel, J. R., 1999, Unsaturated Zone Hydrology for Scientists and Engineers, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  29. 29.
    USEPA, June 30, 2007, Nanotechnology White Paper, publications/whitepaper12022005.pdf
  30. 30.
    West, J. L., and Halas, N., 2003, Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics, Annual Review of Biomedical Engineering, 5:285.PubMedCrossRefGoogle Scholar
  31. 31.
    Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D., and Biswas, P., 2006, Assessing the Risks of Manufactured Nanomaterials, Environmental Science and Technology, 40(14):4336–4345.PubMedCrossRefGoogle Scholar
  32. 32.
    Witherspoon, P. A., 2000, Forewords, p xxii-xxv, in Vadose Zone Science and Technology, Brian B, Looney and Ronald W. Falta, eds., Volume 1, Battelle Press, Columbus, OH.Google Scholar
  33. 33.
    Zhang, W., 2003, Nanoscale iron particles for environment remediation: an overview, Journal of Nanoparticle Research, 5:323–332.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • C. J. G. Darnault
    • 1
  • S. M. C. Bonina
    • 1
  • B. Uyusur
    • 1
  • P. T. Snee
    • 2
  1. 1.Department of Civil and Materials EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of ChemistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations