Characterisation of Residual Stresses Generated by Laser Shock Peening by Neutron and Synchrotron Diffraction

  • Alexander Dominic Evans
  • Andrew King
  • Thilo Pirling
  • Patrice Peyre
  • Phillip John Withers


The fatigue behaviour of engineering alloys can be significantly improved through the application of mechanical surface treatments. These processes generate significant compressive residual stresses near surface by inhomogeneous plastic deformation. In the case of mechanical surface treatments such as laser shock peening, certain burnishing and rolling techniques and ultrasonic impact treatment (UIT), the compressive residual stress layer can extend to a depth of the order of millimeters, with balancing tensile stresses located deeper. Techniques to characterise the residual stresses generated by such mechanical surface treatments non-destructively are mainly limited to diffraction methods using penetrating neutron and synchrotron X-ray radiations. The application of these radiation sources is illustrated here by the characterisation of residual strain distributions in a two types of specimens treated with laser shock peening (LSP). Analyses of diffraction peak broadening provide qualitative information concerning the depth to which the plastic deformation of the treatments extends. Two case studies of laser shock peening of titanium and aluminium alloys is presented to demonstrate the capabilities of neutron and synchrotron diffraction techniques in the field of residual stress characterisation of surface engineered material non-destructively.


Laser shock peening Neutron Synchrotron Diffraction Residual stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hammersley, G., Hackel, L. A., Harris, F. (2000). Surface prestressing to improve fatigue strength of components by laser shot peening. Optics and Lasers in Engineering 34: 327–337CrossRefADSGoogle Scholar
  2. 2.
    Peyre, P., Fabbro, R., Merrien, P., Lieurade, H. P. (1996). Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Materials Science and Engineering A 210(1–2): 102–113CrossRefGoogle Scholar
  3. 3.
    Korsunsky, A. M. (2005). On the modelling of residual stresses due to surface peening using eigenstrain distributions. Journal of Strain Analysis 40(8): 1–8CrossRefGoogle Scholar
  4. 4.
    Wagner, L. (1997). Mechanical surface treatments on titanium alloys: Fundamental mechanisms. Surface Performance of Titanium. Eds. Gregory, J.K., Rack, H.J. and Eylon, D. The Minerals, Metals and Mining Society TMS, Cincinnati, pp. 199–215. ISBN 0-87339-402-XGoogle Scholar
  5. 5.
    Rodopoulos, C. A., Romero, J. S., Curtis, S. A., de los Rios, E. R., Peyre, P. (2003). Effect of controlled shot peening and laser shock peening on the fatigue performance of 2024-T7351 Aluminium alloy. Journal of Materials Engineering and Performance 12(4): 414–419CrossRefGoogle Scholar
  6. 6.
    Ruschau, J. J., John, R., Thompson, S. R., Nicholas, T. (1999). Fatigue crack nucleation and growth rate behavior of laser shock peened titanium. International Journal of Fatigue 21: 199–209CrossRefGoogle Scholar
  7. 7.
    Butler, B. D., Murray, B. C., Reichel, D. G., Krawitz, A. (1989). Elastic constants of alloys measured with neutron diffraction. Advanced in X-ray Analysis 32: 389–395Google Scholar
  8. 8.
    Brandes, E. A., Brook, G. B. (Eds.) (1992). Smithells Metals Reference Book. Oxford, Butterworth-HeinemannGoogle Scholar
  9. 9.
    Hutchings, M. T., Withers, P. J., Holden, T. M., Lorentzen, T. (2005). Introduction to the characterisation of residual stress by neutron diffraction. Boca Raton, FL/London, Taylor & FrancisGoogle Scholar
  10. 10.
    Larson, A. C., Von Dreele, R. B. (2004). General Structure Analysis Software (GSAS), Report No. LAUR 86–748, Los Alamos National Laboratory, USAGoogle Scholar
  11. 11.
    Daymond, M. R., Bourke, M. A. M., Von Dreele, R. B., Clausen, B., Lorentzen, T. (1997). Use of Rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra. Journal of Applied Physics 82: 1554–1562CrossRefADSGoogle Scholar
  12. 12.
    Withers, P. J. (2003). Use of synchrotron X-ray radiation for stress measurement. Eds. M. E. Fitzpatrick and A. Lodini. London, Taylor & FrancisGoogle Scholar
  13. 13.
    Eigenmann, B., Macherauch, E. (1996). X-ray investigations of stress states in materials. Materialwissenschaft und Werkstofftechnik 27: 426–438CrossRefGoogle Scholar
  14. 14.
    Ungár, T., Gubicza, J., Ribárik, G., Borbély, A. (2001). Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals. Journal of Applied Crystallography 34: 298–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2009

Authors and Affiliations

  • Alexander Dominic Evans
    • 1
  • Andrew King
    • 2
  • Thilo Pirling
    • 3
  • Patrice Peyre
    • 4
  • Phillip John Withers
    • 2
  1. 1.Paul Scherrer Institut (PSI)Villigen-PSISwizterland
  2. 2.School of MaterialsUniversity of ManchesterManchesterUK
  3. 3.ILLGrenobleFrance
  4. 4.Laboratoire pour l’Application des Lasers de Puissance (LALP)AcceuilFrance

Personalised recommendations