From Games to Dialogues and Back

Towards a General Frame for Validity
  • Shahid Rahman
  • Tero Tulenheimo
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 15)


In this article two game-theoretically flavored approaches to logic are systematically compared: dialogical logic founded by Paul Lorenzen and Kuno Lorenz, and the game-theoretical semantics of Jaakko Hintikka. For classical proposi-tional logic and for classical first-order logic, an exact connection between ‘in-tuitionistic dialogues with hypotheses’ and semantic games is established. Various questions of a philosophical nature are also shown to arise as a result of the comparison, among them the relation between the model-theoretic and proof-theoretic approaches to the philosophy of logic and mathematics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blackburn, P., de Rijke, M., and Venema, Y. (2002). Modal Logic. Cambridge University Press, Cambridge.Google Scholar
  2. Blass, A. (1992). A game semantics for linear logic. Annals of Pure and Applied Logic, 56: 183–220.CrossRefGoogle Scholar
  3. Carlson, L. (1983). Dialogue Games. An Approach to Discourse Analysis. Reidel, Dordrecht.Google Scholar
  4. Dascal, M., Hintikka, J., and Lorenz, K. (1995). Jeux dans le langage/Games in Language/Spiel in der Sprache. In Dascal, M., Gerhardus, D., Lorenz, K., and Meggle, G., editors, Sprach-philosophie/Philosophy of Language/La Philosophie du langage, pages 1371–1390. De Gruyter, Berlin.Google Scholar
  5. Felscher, W. (1985). Dialogues, strategies and intuitionistic provability. Annals of Pure and Applied Logic, 28:217–254.CrossRefGoogle Scholar
  6. Haas, G. (1980). Hypothesendialoge, konstruktiver Sequenzenkalköl und die Rechtfertigung von Dialograhmenregeln. In Gethmann, C. F., editor, Theorie des wissenschaftlichen Argu-mentierens, pages 136–161. Suhrkamp, Frankfurt.Google Scholar
  7. Henkin, L. (1950). Completeness in the theory of types. Journal of Symbolic Logic, 15(2): 81–91.CrossRefGoogle Scholar
  8. Henkin, L. (1961). Some remarks on infinitely long formulas. In Infinitistic Methods, pages 167–183. Pergamon, Oxford.Google Scholar
  9. Hintikka, J. (1968). Language-games for quantifiers. Americal Philosophical Quarterly Monograph Series 2: Studies in Logical Theory. Basil Blackwell, Oxford.Google Scholar
  10. Hintikka, J. (1973). Logic, Language-Games and Information: Kantian Themes in the Philosophy of Logic. Clarendon, Oxford.Google Scholar
  11. Hintikka, J. (1987). Game-theoretical semantics as a synthesis of verificationist and truth-conditional meaning theories. In LePore, E., editor, New Directions in Semantics. Academic, London.Google Scholar
  12. Hintikka, J. (1993). The original Sinn of Wittgenstein's philosophy of mathematics. In Puhl, K., editor, Wittgenstein's Philosophy of Mathematics, pages 24–51. Hölder—Pichler—Tempsky, Vienna.Google Scholar
  13. Hintikka, J. (1996). The Principles of Mathematics Revisited. Cambridge University Press, Cambridge.Google Scholar
  14. Hintikka, J. (2002). Hyperclassical logic (a.k.a. IF logic) and its implications for logical theory. Bulletin of Symbolic Logic, 8(3):404–423.CrossRefGoogle Scholar
  15. Hintikka, J. and Rantala, V. (1976). A new approach to infinitary languages. Annals of Mathematical Logic, 10:95–115.CrossRefGoogle Scholar
  16. Hintikka, J. and Sandu, G. (1997). Game-theoretical semantics. In van Benthem, J. and ter Meulen, A., editors, Handbook of Logic and Language, pages 361–410. Elsevier, Amsterdam.CrossRefGoogle Scholar
  17. Hintikka, M. B. and Hintikka, J. (1986). Investigating Wittgenstein. Basil Blackwell, Oxford.Google Scholar
  18. Hodges, W. (1997). Model theory. In Rota, G.-C., editor, Encyclopedia of Mathematics and Its Applications, volume 42. Cambridge University Press, Cambridge. First published 1993.Google Scholar
  19. Hodges, W. (2006). Logic and games. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy (Summer 2006 Edition). entries/logic-games/.Google Scholar
  20. Hyttinen, T. (1990). Model theory for infinite quantifier logics. Fundamenta Mathematicæ, 134:125–142.Google Scholar
  21. Kamlah, W. and Lorenzen, P. (1973). Logische Propädeutik. Bibilographisches Institut, Mannheim.Google Scholar
  22. Karttunen, M. (1984). Model theory for infinitely deep languages. Annales Academiæ Scien-tiarum Fennicæ, 50.Google Scholar
  23. Kontchakov, R., Kurucz, A., and Zakharyaschev, M. (2005). Undecidability of first-order intu-itionistic and modal logics with two variables. Bulletin of Symbolic Logic, 11(3):428–438.CrossRefGoogle Scholar
  24. Krynicki, M. and Mostowski, M. (1995). Henkin quantifiers. In Krynicki, M., Mostowski, M., and Sczerba, L. W., editors, Quantifiers: Logics, Models and Computation, volume 1, pages 193–262. Kluwer, Dordrecht.Google Scholar
  25. Lorenz, K. (1961). Arithmetik und Logik als Spiele. Ph.D. thesis, Christian-Albrechts-Universität Zu Kiel.Google Scholar
  26. Lorenz, K. (1970). Elemente der Sprachkritik. Suhrkamp, Frankfurt.Google Scholar
  27. Lorenz, K. (2001). Basic objectives of dialogue logic in historical perspective. Synthese, 127:255–263.CrossRefGoogle Scholar
  28. Lorenzen, P. and Lorenz, K. (1978). Dialogische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt.Google Scholar
  29. Lorenzen, P. and Schwemmer, O. (1975). Konstruktive Logik, Ethik und Wissenschaftstheorie. Bibilographisches Institut, Mannheim.Google Scholar
  30. Makkai, M. (1977). Admissible sets and infinitary logic. In Barwise, J., editor, Handbook of Mathematical Logic, pages 233–281. North-Holland, Amsterdam.CrossRefGoogle Scholar
  31. Osborne, M. J. and Rubinstein, A. (1994). A Course in Game Theory. MIT, Cambridge, MA.Google Scholar
  32. Rahman, S. (1994). Über Dialoge, Protologische Kategorien und andere Seltenheiten. Peter Lang, Frankfurt.Google Scholar
  33. Rahman, S. and Keiff, L. (2005). On how to be a dialogician. In Vanderveken, D., editor, Logic, Thought and Action, volume 2: Logic, Epistemology and Unity of Science, pages 359–408. Springer, Dordrecht.CrossRefGoogle Scholar
  34. Ranta, A. (1988). Propositions as games as types. Synthese, 76:377–395.CrossRefGoogle Scholar
  35. Saarinen, E. (1978). Dialogue semantics versus game-theoretical semantics. In Proceedings of the Biennial Meeting of the Philosophy of Science Association (PSA), volume 2: Symposia and Invited Papers, pages 41–59. The University of Chicago Press, Chicago, IL.Google Scholar
  36. Sandu, G. and Pietarinen, A.-V. (2001). Partiality and games: Propositional logic. Logic Journal of the IGPL, 9(1):107–127.CrossRefGoogle Scholar
  37. Sandu, G. and Pietarinen, A.-V. (2003). Informationally independent connectives. In Mints, G. and Muskens, R., editors, Games, Logic, and Constructive Sets, pages 23–41. CSLI, Stanford.Google Scholar
  38. Schwalbe, U. and Walker, P. (2001). Zermelo and the early history of game theory. Games and Economic Behaviour, 34:123–137.CrossRefGoogle Scholar
  39. Skolem, Th. (1920). Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Be-weisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen. Skrifter utgit av Videnskabsselskapet i Kristiania, I. Matematisk-naturvidenskabelig klasse no. 4. Google Scholar
  40. Stegmüller, W. (1964). Remarks on the completeness of logical systems relative to the validity-concepts of P. Lorenzen and K. Lorenz. Notre Dame Journal of Formal Logic, 5:81–112.CrossRefGoogle Scholar
  41. Sundholm, G. (2002). Proof theory and meaning. In Gabbay, D. M. and Guenthner, F., editors, Handbook of Philosophical Logic, volume 9, pages 165–198. Kluwer, Dordrecht, second edition.Google Scholar
  42. Tarski, A. (1983). The concept of truth in the languages of the deductive sciences. In Corcoran, J., editor, A. Tarski: Logic, Semantics, Metamathematics. Papers from 1923 to 1938, pages 152–278. Hackett, Indianapolis, IN. Polish; original in Prace Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk Matematyczno—Fizycznych 34, Warsawm, 1933.Google Scholar
  43. Tarski, A. and Vaught, R. L. (1956). Arithmetical extensions of relational systems. Compositio Mathematica, 13:81–102.Google Scholar
  44. van Benthem, J. (2001a). Games in dynamic epistemic logic. Bulletin of Economic Research, 53(4):219–248. Proceedings LOFT-4, Torino, Bonanno, G. and van der Hoek, W., editors.CrossRefGoogle Scholar
  45. van Benthem, J. (2001b). Logic and Games. Lecture Notes (Draft Version), ILLC, Amsterdam.Google Scholar
  46. van Benthem, J. (2002). Extensive games as process models. Journal of Logic, Language and Information, 11:289–313.CrossRefGoogle Scholar
  47. Vaught, R. L. (1973). Descriptive set theory in lε1ε. In Mathias, A. and Rogers, H., editors, Cambridge Summer School in Mathematical Logic, volume 337 of Lecture Notes in Mathematics, pages 574–598. Springer, Berlin.CrossRefGoogle Scholar
  48. von Neumann, J. and Morgenstern, O. (2004). Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, sixtieth-anniversary edition. (First appeared in 1944.)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Shahid Rahman
    • 1
  • Tero Tulenheimo
    • 2
  1. 1.U.F.R. de Philosophie Domaine Universitaire “Pont de Bois”Universit'e Lille IIIVilleneuve d'AscqFrance
  2. 2.Department of PhilosophyAcademy of Finland, University of HelsinkiFinland

Personalised recommendations