In the Beginning was Game Semantics?

  • Giorgi Japaridze
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 15)


This chapter presents an overview of computability logic—the game-semantically constructed logic of interactive computational tasks and resources. There is only one non-overview, technical section in it, devoted to a proof of the soundness of affine logic with respect to the semantics of computability logic.


Turing Machine Classical Logic Linear Logic Static Game Computability Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramsky, S. and Jagadeesan, R. (1994). Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic, 59(2):543–574.CrossRefGoogle Scholar
  2. Blass, A. (1972). Degrees of indeterminacy of games. Fundamenta Mathematicæ, 77:151–166.Google Scholar
  3. Blass, A. (1992). A game semantics for linear logic. Annals of Pure and Applied Logic, 56: 183–220.CrossRefGoogle Scholar
  4. Felscher, W. (1985). Dialogues, strategies, and intuitionistic provability. Annals of Pure and Applied Logic, 28:217–254.CrossRefGoogle Scholar
  5. Girard, J.Y. (1987). Linear logic. Theoretical Computer Science, 50(1):1–102.CrossRefGoogle Scholar
  6. Gödel, K. (1958). ü ber eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica, 12:280–287.CrossRefGoogle Scholar
  7. Goldin, D. Q., Smolka, S. A., Attie, P. C., and Sonderegger, E. L. (2004). Turing machines, transition systems, and interaction. Information and Computation, 194(2):101–128.CrossRefGoogle Scholar
  8. Japaridze, G. (1997). A constructive game semantics for the language of linear logic. Annals of Pure and Applied Logic, 85:87–156.CrossRefGoogle Scholar
  9. Japaridze, G. (2000). The propositional logic of elementary tasks. Notre Dame Journal of Formal Logic, 41(2):171–183.CrossRefGoogle Scholar
  10. Japaridze, G. (2002). The logic of tasks. Annals of Pure and Applied Logic, 117:263–295.CrossRefGoogle Scholar
  11. Japaridze, G. (2003). Introduction to computability logic. Annals of Pure and Applied Logic, 123:1–99.CrossRefGoogle Scholar
  12. Japaridze, G. (2006a). From truth to computability I. Theoretical Computer Science, 357:100–135.CrossRefGoogle Scholar
  13. Japaridze, G. (2006b). Introduction to cirquent calculus and abstract resource semantics. Journal of Logic and Computation, 16(4):489–532.CrossRefGoogle Scholar
  14. Japaridze, G. (2006c). Propositional computability logic I. ACM Transactions on Computational Logic, 7(2):302–330.CrossRefGoogle Scholar
  15. Japaridze, G. (2006d). Propositional computability logic II. ACM Transactions on Computational Logic, 7(2):331–362.CrossRefGoogle Scholar
  16. Japaridze, G. (2006e). Computability logic: a formal theory of interaction. In Goldin, D., Smolka, S., and Wegner, P., editors, Interactive Computation: The New Paradigm. pages 183–223. Springer, Berlin.Google Scholar
  17. Japaridze, G. (2007a). From truth to computability II. Theoretical Computer Science, 379:20–52.CrossRefGoogle Scholar
  18. Japaridze, G. (2007b). Intuitionistic computability logic. Acta Cybernetica, 18(1):77–113.Google Scholar
  19. Japaridze, G. (2007c). The logic of interactive Turing reduction. Journal of Symbolic Logic, 72(1):243–276.CrossRefGoogle Scholar
  20. Japaridze, G. (2007d). The intuitionistic fragment of computability logic at the propositional level. Annals of Pure and Applied Logic, 147(3):187–227.CrossRefGoogle Scholar
  21. Japaridze, G. (2008a). Cirquent calculus deepened. Journal of Logic and Computation,18(6):983–1028.CrossRefGoogle Scholar
  22. Japaridze, G. (2008b). Sequential operators in computability logic. Information and Computation, 206(12):1443–1475.CrossRefGoogle Scholar
  23. Japaridze, G. (2009). Many concepts and two logics of algorithmic reduction. Studia Logica, 91 (to appear).Google Scholar
  24. Kleene, S.C. (1952). Introduction to Metamathematics. D. van Nostrand Company, New Yo r k /Toronto.Google Scholar
  25. Kolmogorov, A.N. (1932). Zur Deutung der intuitionistischen Logik. Mathematische Zeitschrift, 35:58–65.CrossRefGoogle Scholar
  26. Konolige, K. (1988). On the relation between default and autoepistemic logic. Artificial Intelligence, 35(3):343–382.CrossRefGoogle Scholar
  27. Levesque, H. and Lakemeyer, G. (2000). The Logic of Knowledge Bases. MIT Press, Cambridge, MA.Google Scholar
  28. Lorenzen, P. (1959). Ein dialogisches Konstruktivitätskriterium. In Infinitistic Methods, pages 193–200. PWN, Warsaw.Google Scholar
  29. Milner, R. (1993). Elements of interaction. Communications of the ACM, 36(1):79–89.CrossRefGoogle Scholar
  30. Moore, R. (1985). A formal theory of knowledge and action. In Hobbs, J. and Moore, R., editors, Formal Theories of Commonsense Worlds. Ablex, Norwood, NJ.Google Scholar
  31. Pietarinen, A. (2002). Semantic Games in Logic and Language. Academic dissertation, University of Helsinki, Helsinki.Google Scholar
  32. Sipser, M. (2006). Introduction to the Theory of Computation. Thomson Course Technology, USA, 2nd edition.Google Scholar
  33. Turing, A. (1936). On computable numbers with an application to the entsheidungsproblem. Proceedings of the London Mathematical Society, 42(2):230–265.Google Scholar
  34. van Benthem, J. (2001). Logic in games. ILLC preprint, University of Amsterdam, Amsterdam.Google Scholar
  35. Vereshchagin, N. (2006) Japaridze's computability logic and intuitionistic propositional calculus. Moscow State University Preprint, 2006.
  36. Wegner, P. (1998). Interactive foundations of computing. Theoretical Computer Science,192:315–351.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Giorgi Japaridze
    • 1
  1. 1.Department of Computing SciencesVillanova UniversityVillanovaUSA

Personalised recommendations