Photosynthesis in Global-Scale Models

  • Andrew D. Friend
  • Richard J. Geider
  • Michael J. Behrenfeld
  • Christopher J. Still
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 29)

Photosynthesis models are now routinely used in many types of global investigations. Much of this work is driven by global environmental change concerns, with global models seen as key tools with which to synthesize current understanding, explain paleoclimatic variability in global biogeochemistry and ecology, and forecast ecosystem responses to climate change and increasing atmospheric CO2 levels. We discuss the approaches used to model terrestrial and marine photosynthesis at the global scale. Models in both realms fall into two equivalent categories, one empirical and one mechanistic. Within each category there are many similarities between terrestrial and marine models. Most empirical approaches estimate the distribution of photosynthetic capacity (chlorophyll in the oceans, LAI on land) from space and apply a photosynthetic light-use efficiency approach to obtain an estimate of carbon uptake. Mechanistic approaches attempt to simulate the distribution of capacity itself, as well as the rate of photosynthesis, and are thus capable of projecting terrestrial and marine carbon fluxes into the future and distant past.

A completely new state-of the-art global combined simulation of terrestrial and marine production is presented. Terrestrial photosynthesis is calculated using a mechanistic approach that treats the within-leaf light gradient, among other improvements over previous methods. Marine production utilizes a new approach that treats spatial and temporal variation in phytoplankton chlorophyll to C ratio. Mean contemporary annual net primary productivity is estimated to be 107.3 Pg C year−1, with 51.1% coming from land and 48.9% from the oceans.

Improvements in prognostic modeling of global photosynthesis will come about through attention to the same issues in both terrestrial and marine environments. These primarily concern high quality validation data at scales appropriate to test global models and the development of methodologies to deal with the variety of physiological and phenological types. In addition, attention needs to be given to both the potential importance of phenotypic plasticity and better mechanistic approaches for the prediction of photosynthetic capacity distribution in space and time. Dialogue between modelers, experimental physiologists, and ecologists needs to improve. Without this there is a very real danger that global models will assume a shared acceptance of an in silico reality that bears only superficial resemblance to that in vivo.


Gross Primary Production Mixed Layer Depth Global Change Biol Dynamic Global Vegetation Model Ocean Carbon Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvain S, Moulin C, Dandonneau Y and Bréon FM (2005) Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep-Sea Res Pt I 52: 1989–2004CrossRefGoogle Scholar
  2. Alvain S, Moulin C, Dandonneau Y and Loisel H (2008) Seasonal distribution and succession of dominant phy-toplankton groups in the global ocean: a satellite view. Global Biogeochem Cy 22: GB3001CrossRefGoogle Scholar
  3. Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann Bot-London 86: 1–20CrossRefGoogle Scholar
  4. Anderson TR (2005) Plankton functional type modelling: running before we can walk? J Plankton Res 27: 1073–1081Google Scholar
  5. Antoine D, Morel A, Gordon HR, Banzon VF and Evans RH (2005) Bridging ocean color observations of the 1980s and 2000s in search of long-term trends. J Geophys Res 110: C06009CrossRefGoogle Scholar
  6. Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437: 349–355PubMedCrossRefGoogle Scholar
  7. Austin RW and Petzold TJ (1986) Spectral dependence of the diffuse attenuation coefficient of light in ocean waters. Opt Eng 25: 473–479Google Scholar
  8. Badeck F-W (1995) Intra-leaf gradient of assimilation rate and optimal allocation of canopy nitrogen: a model on the implications of the use of homogeneous assimilation functions. Aust J Plant Physiol 22: 425–439Google Scholar
  9. Balch WM, Gordon HR, Bowler BC, Drapeau DT and Booth ES (2005) Calcium carbonate measurements in the surface global ocean based on Moderate-Resolution Imaging Spectroradiometer data. J Geophys Res 110: C07001CrossRefGoogle Scholar
  10. Balch W, Drapeau D, Bowler B and Booth E (2007) Prediction of pelagic calcification rates using satellite measurements. Deep-Sea Res Pt II 54: 478–495CrossRefGoogle Scholar
  11. Baldocchi DD and Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across to decadal time series. Ecol Modell 142: 155–184CrossRefGoogle Scholar
  12. Ball JT, Woodrow IE and Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in Photosynthesis Research, Vol IV, pp. 221–224. Martinus Nijhoff, Dordrecht, The NetherlandsGoogle Scholar
  13. Banse K and Postel JR (2003) On using pigment-normalized, light-saturated carbon uptake with satellite-derived pigment for estimating column photosynthesis. Global Bio-geochem Cy 17: 1079CrossRefGoogle Scholar
  14. Behrenfeld MJ and Boss E (2003) The beam attenuation to chlorophyll ratio: an optical index of phytoplankton photoacclimation in the surface ocean? Deep-Sea Res Pt I 50: 1537–1549CrossRefGoogle Scholar
  15. Behrenfeld MJ and Boss E (2006) Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass. J Mar Res 64: 431–451CrossRefGoogle Scholar
  16. Behrenfeld MJ and Falkowski PG (1997a) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol Oceanogr 41: 1–20Google Scholar
  17. Behrenfeld MJ and Falkowski PG (1997b) A consumer's guide to phytoplankton primary productivity models. Limnol Oceanogr 42: 1479–1491Google Scholar
  18. Behrenfeld MJ, Bale AJ, Kolber ZS, Aiken J and Falkowski PG (1996) Confirmation of iron limitation of phytoplank-ton photosynthesis in the equatorial Pacific Ocean. Nature 383: 508–511CrossRefGoogle Scholar
  19. Behrenfeld MJ, Boss E, Siegel DA and Shea DM (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem Cy 19: GB1006CrossRefGoogle Scholar
  20. Berline L, Brankart JM, Brasseur P, Ourmieres Y and Verron J (2007) Improving the physics of a coupled physical-biogeochemical model of the North Atlantic through data assimilation: Impact on the ecosystem. J Marine Syst 64: 153–172CrossRefGoogle Scholar
  21. Bernacchi CJ, Singsass EL, Pimentel C, Portis Jr AR and Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24: 253–259CrossRefGoogle Scholar
  22. Berry JA and Farquhar GD (1978) The CO2 concentration function of C4 photosynthesis: a biochemical model. In: Hall D, Coombs J and Goodwin T (eds) Proceedings of the 4th International Congress on Photosynthesis, pp. 119–131. Biochemical Society, LondonGoogle Scholar
  23. Betts RA, Cox PM, Lee SE and Woodward FI (1997) Contrasting physiological and structural vegetation feedbacks in climate change simulations. Nature 387: 796–799CrossRefGoogle Scholar
  24. Bonan GB, Levis S, Sitch S, Vertenstein M and Oleson KW (2003) A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biol 9: 1543–1566CrossRefGoogle Scholar
  25. Bond-Lamberty B and Gower S (2007) Estimation of stand-level leaf area for boreal bryophytes. Oecologia 157: 584–592CrossRefGoogle Scholar
  26. Borges AV, Delille B and Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts. Geophys Res Lett 32: L1460CrossRefGoogle Scholar
  27. Botta A, Viovy N, Ciais P, Friedlingstein P and Monfray P (2000) A global prognostic scheme of leaf onset using satellite data. Global Change Biol 6: 709–725CrossRefGoogle Scholar
  28. Boyd PW, Crossley AC, DiTullio GR, Griffiths FB, Hutchins DA, Queguiner B, Sedwick PN and Trull TW (2001) Control of phytoplankton growth by iron supply and irradiance in the subantarctic Southern Ocean: Experimental results from the SAZ Project. J Geophys Res 106: 31573–31583CrossRefGoogle Scholar
  29. Bricaud A, Claustre H, Ras J and Oubelkheir K (2004) Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J Geophys Res 109: C11010CrossRefGoogle Scholar
  30. Bricaud A, Mejia C, Blondeau-Patissier D, Claustre H, Crepon M and Thiria S (2007) Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. Appl Optics 46: 1251–1260CrossRefGoogle Scholar
  31. Brix H, Gruber N, Karl DM and Bates NR (2006) On the relationships between primary, net community, and export production in subtropical gyres. Deep-Sea Res Pt II 53: 698–717CrossRefGoogle Scholar
  32. Brovkin V, Ganopolski A and Svirezhev Y (1997) A continuous climate-vegetation classification for use in climate-biosphere studies. Ecol Modell 101: 251–261CrossRefGoogle Scholar
  33. Brown RH (1999) Agronomic implications of C4 photosynthesis. In: Sage RF and Monson RK (eds) C4 Plant Biology, pp. 473–507. Academic, San Diego, CACrossRefGoogle Scholar
  34. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA and Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104: 18866–18870PubMedCrossRefGoogle Scholar
  35. Capone CG, Burns JA, Montoya JP, Subramaniam A, Mahaffey C, Gunderson T, Michaels AF and Carpenter EJ (2005) Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochem Cy 19: GB2024CrossRefGoogle Scholar
  36. Carr M-E, Friedrichs MAM, Schmeltz M, Aita MN, Barber R, Behrenfeld M, Bidigare R, Buitenhuis ET, Campbell J, Ciotti A, Dierssen H, Dowell M, Dunne J, Esaias W, Gentili B, Gregg W, Groom S, Hoepffner N, Ishizaka J, Kameda T, Le Quéré C, Lohrenz S, Marra J, Mélin F, Moore K, Morel A, Reddy TE, Ryan J, Scardi M, Smyth T, Turpie K, Tilstone G, Waters K and Yamanaka Y (2006) A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res Pt II 53: 741–770CrossRefGoogle Scholar
  37. Carswell FE, Meir P, Wandelli EV, Bonates LCM, Kruijt B, Barbosa EM, Nobre AD, Grace J and Jarvis PG (2000) Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol 20: 179–186PubMedGoogle Scholar
  38. Choudhury BJ (2001) Estimating gross photosynthesis using satellite and ancillary data: approach and preliminary results. Remote Sens Environ 75: 1–25CrossRefGoogle Scholar
  39. Collatz GJ, Ball JT, Grivet C and Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agr Forest Meteorol 54: 107–136CrossRefGoogle Scholar
  40. Collatz GJ, Ribas-Carbo M and Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19: 519–538CrossRefGoogle Scholar
  41. Collatz GJ, Berry JA and Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: Present, past, and future. Oecologia 114: 441–454CrossRefGoogle Scholar
  42. Collins SL, Knapp AK, Briggs JM, Blair JM and Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280: 745–747PubMedCrossRefGoogle Scholar
  43. Conkright ME, Garcia HE, O'Brien TD, Locarnini RA, Boyer TP, Stephens C and Antonov JI (2002) World Ocean Atlas 2001. Volume 4: Nutrients. Levitus S (ed) NOAA Atlas NESDID 52, US Government Printing Office, Washington, DC de Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A, Assmy P, Bakker DCE, Bozec Y, Barber RT, Brzezinski MA, Buesseler KO, Boye M, Croot PL, Gervais F, Gorbunov MY, Harrison PJ, Hiscock WT, Laan P, Lancelot C, Law CS, Levasseur M, Marchetti A, Millero FJ, Nishioka J, Nojiri Y, Van Oijen T, Riebesell U, Rijkenberg MJA, Saito H, Takeda S, Timmermans KR, Veldhuis MJW, Waite AM and Wong C-S (2005) Synthesis of iron fertilization experiments: From the Iron Age in the Age of Enlightenment. J Geophys Res 110, C09S16Google Scholar
  44. Cox PM, Betts RA, Jones CD, Spall SA and Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184–187PubMedCrossRefGoogle Scholar
  45. Cullen JJ, Yang X and MacIntyre HL (1992) Nutrient limitation of marine photosynthesis. In: Falkowski PG and Woodhead AV (eds) Primary Productivity and Biogeo-chemical Cycles in the Sea, pp 69–88. Plenum Press, New YorkGoogle Scholar
  46. Demarty J, Chevallier F, Friend AD, Viovy N, Piao S and Ciais P (2007) Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model. Geophys Res Lett 34: L15402CrossRefGoogle Scholar
  47. Deutsch C, Sarmiento JL, Sigman DM, Gruber N and Dunne JP (2007) Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445: 163–167PubMedCrossRefGoogle Scholar
  48. Dewar RC (1996) The correlation between plant growth and intercepted radiation: An interpretation in terms of optimal plant nitrogen content. Ann Bot-London 78: 125–136CrossRefGoogle Scholar
  49. Dickinson RE, Shaikh M, Bryant R and Graumlich L (1998) Interactive canopies for a climate model. J Climate 11: 2823–2836CrossRefGoogle Scholar
  50. Doney SC, Keith LK and Moore JK (2003) Global Ocean Carbon Cycle Modeling. In: Fasham MFR (ed) Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change, pp 217–238. Springer, Berlin/Heidelberg/ New YorkGoogle Scholar
  51. Duarte CM and Cebrián J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41: 1758–1766Google Scholar
  52. Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Cornell S, Dentener F, Galloway J, Ganeshram RS, Geider RJ, Jickells T, Kuypers MM, Langlois R, Liss PS, Liu SM, Middelburg JJ, Moore CM, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen LL, Uematsu M, Ulloa O, Voss M, Ward B and Zamora L (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320: 893–897PubMedCrossRefGoogle Scholar
  53. Dunne JP, Sarmiento JL and Gnanadesikan A (2007) A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem Cy 21: GB4006CrossRefGoogle Scholar
  54. Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387: 272–275CrossRefGoogle Scholar
  55. Falkowski PG and Kiefer DA (1985) Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass. J Plankton Res 7: 715–731CrossRefGoogle Scholar
  56. Falkowski PG and Raven JA (2007) Aquatic Photosynthesis. 2nd Edition. Princeton University Press, Princeton, NJGoogle Scholar
  57. Farquhar GD, Von Caemmerer S and Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90CrossRefGoogle Scholar
  58. Farquhar GD, Ehleringer JR and Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys 40: 503–537CrossRefGoogle Scholar
  59. Fasham MJR, Ducklow HW and McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48: 591–639Google Scholar
  60. Field C and Mooney HA (1986) The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ (ed) On the Economy of Plant Form and Function, pp. 25–55. Cambridge University Press, Cambridge, UKGoogle Scholar
  61. Field CB, Randerson JT and Malmström CM (1995) Global net primary production: Combining ecology and remote sensing. Remote Sens Environ 51: 74–88CrossRefGoogle Scholar
  62. Field CB, Behrenfeld MJ, Randerson JT and Falkowski P (1998) Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240PubMedCrossRefGoogle Scholar
  63. Flynn KJ (2005) Castles built on sand: Dysfunctionality in plankton models and the inadequacy of dialogue between biologists and modellers. J Plankton Res 27: 1205–1210CrossRefGoogle Scholar
  64. Flynn KJ (2006) Reply to Horisons Article ‘Plankton functional type modeling: Running before we can walk’ Anderson (2005): II Putting trophic functionality into plankton functional types. J Plankton Res 28: 873–875CrossRefGoogle Scholar
  65. Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S and Haxeltine A (1996) An integrated biosphere model and land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cy 10: 603–628CrossRefGoogle Scholar
  66. Foley JA, Levis S, Prentice IC, Pollard D and Thompson SL (1998) Coupling dynamic models of climate and vegetation. Global Change Biol 4: 561–579CrossRefGoogle Scholar
  67. Follows M and Dutkiewicz S (2001) Meteorological modulation of the North Atlantic spring bloom. Deep-Sea Res Pt II 49: 321–344CrossRefGoogle Scholar
  68. Follows MJ, Dutkiewicz S, Scott Grant S and Chisholm SW (2007) Emergent biogeography of microbial communities in a model ocean. Science 315: 1843–1846PubMedCrossRefGoogle Scholar
  69. Friedlingstein P, Joel G, Field CB and Fung IY (1999) Toward an allocation scheme for global terrestrial carbon models. Global Change Biol 5: 755–770CrossRefGoogle Scholar
  70. Friedlingstein P, Bopp L, Rayner P, Cox P, Betts R, Jones C, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Matthews HD, Weaver AJ, Fung I, John J, Bala G, Joos F, Strassmann K, Kato T, Kawamiya M, Yoshikawa C, Knorr W, Lindsay K, Matthews HD, Raddatz T, Reick C, Roeckner E, Schnitzler K-G, Schnur R and Zeng N (2006) Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J Climate 19: 3337–3353CrossRefGoogle Scholar
  71. Friedrichs MAM, Dusenberry JA, Anderson LA, Armstrong RA, Chai F, Christian JR, Doney SC, Dunne J, Fujii M, Hood R, McGillicuddy DJ, Moore JK, Schartau M, Spitz YH and Wiggert JD (2007) Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups. J Geophys Res 112: C08001CrossRefGoogle Scholar
  72. Friend AD (1995) PGEN: An integrated model of leaf photosynthesis, transpiration, and conductance. Ecol Modell 77: 233–255CrossRefGoogle Scholar
  73. Friend AD (1998) Parameterisation of a global daily weather generator for terrestrial ecosystem modeling. Ecol Modell 109: 121–140CrossRefGoogle Scholar
  74. Friend AD (2001) Modelling canopy CO2 fluxes: Are ‘big-leaf’ simplifications justified? Global Ecol Biogeogr 10: 603–619CrossRefGoogle Scholar
  75. Friend AD and Kiang NY (2005) Land surface model development for the GISS GCM: Effects of improved canopy physiology on simulated climate. J Climate 18: 2883–2902CrossRefGoogle Scholar
  76. Friend AD and White A (2000) Evaluation and analysis of a dynamic terrestrial ecosystem model under pre-industrial conditions at the global scale. Global Biogeochem Cy 14: 1173–1190CrossRefGoogle Scholar
  77. Friend AD, Stevens AK, Knox RG and Cannell MGR (1997) A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecol Modell 95: 249–287CrossRefGoogle Scholar
  78. Friend, AD, Arneth A, Kiang NY, Lomas M, Ogée J, Rödenbeck C, Running SW, Santaren J-D, Sitch S, Viovy N, Woodward FI and Zaehle S (2007) FLUXNET and modelling the global carbon cycle. Global Change Biol 13: 610–633CrossRefGoogle Scholar
  79. Fung IY, Doney SC, Lindsay K and John J (2005) Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci USA 102: 11201–11206PubMedCrossRefGoogle Scholar
  80. Gattuso JP, Frankignoulle M and Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29: 405–434CrossRefGoogle Scholar
  81. Gattuso JP, Gentili B, Duarte CM, Kleypas JA, Mid-delburg JJ and Antoine D (2006) Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeochemistry 3: 489–513Google Scholar
  82. Geider RJ (1990) The relationship between steady state phy-toplankton growth and photosynthesis. Limnol Oceanogr 35: 971–972Google Scholar
  83. Geider RJ (1992) Respiration: Taxation without representation. In: Falkowski PG and Woodhead AV (eds) Primary Productivity and Biogeochemical Cycles in the Sea, pp 333–360. Plenum Press, New YorkGoogle Scholar
  84. Geider RJ, MacIntyre HL and Kana TM (1998) A dynamic regulatory model of phytoplankton acclimation to light, nutrients and temperature. Limnol Oceanogr 43: 679–694Google Scholar
  85. Ginoux M, Chin I, Tegen J, Prospero M, Holben B, Dubovik O and Lin SJ (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106: 20255–20273CrossRefGoogle Scholar
  86. Giordano M, Beardall J and Raven JA (2005) CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56: 99–131PubMedCrossRefGoogle Scholar
  87. Global Soil Data Task Group (2000) Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS). [Global Gridded Surfaces of Selected Soil Characteristics (International Geosphere-Biosphere Programme - Data and Information System)]. Data set. Available on-line [] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
  88. Goetz SJ and Prince SD (1998) Variability in carbon exchange and light utilization among boreal forest stands: Implications for remote sensing of net primary production. Can J Forest Res 28: 37–389CrossRefGoogle Scholar
  89. Gower ST, Kucharik CJ and Norman JM (1999) Direct and indirect estimation of leaf area index, fapar, and net primary production of terrestrial ecosystems. Remote Sens Environ 70: 29–51CrossRefGoogle Scholar
  90. Gregg WW (2008) Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model. J Marine Syst 69: 205–225CrossRefGoogle Scholar
  91. Gregg WW and Casey NW (2004). Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sens Environ 93: 463–479CrossRefGoogle Scholar
  92. Gregg WW and Casey NW (2007a) Modeling coccol-ithophores in the global oceans. Deep-Sea Res Pt II 54: 447–477CrossRefGoogle Scholar
  93. Gregg WW and Casey NW (2007b) Sampling biases in MODIS and SeaWiFS ocean chlorophyll data. Remote Sens Environ 111: 25–35CrossRefGoogle Scholar
  94. Gu L, Baldocchi D, Verma SB, Black TA, Vesala T, Falge EM and Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107: NO. D6, 4050Google Scholar
  95. Hanan NP, Berry JA, Verma SB, Walter-Shea EA, Suyker AE, Burba GG and Denning AS (2005) Testing a model of CO2, water and energy exchange in Great Plains tall-grass prairie and wheat ecosystems. Agr Forest Meteorol 131: 162–179CrossRefGoogle Scholar
  96. Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Ruedy R and Travis L (1983) Efficient three-dimensional global models for climate change studies: Models I and II. Mon Weather Rev 111: 609–662CrossRefGoogle Scholar
  97. Harley PC, Thomas RB, Reynolds JF and Strain BR (1992) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15: 271–282CrossRefGoogle Scholar
  98. Hood RR, Laws EA, Armstrong RA, Bates NR, Brown CW, Carlson CA, Chai F, Doney SC, Falkowski PG, Feely RA, Friedrichs MAM, Landry MR, Keith Moore J, Nelson D,M, Richardson TL, Salihoglu B, Schartau M, Toole DA and Wiggert JD (2006) Pelagic functional group modeling: Progress, challenges and prospects. Deep-Sea Res Pt II 53: 459–512CrossRefGoogle Scholar
  99. Hood RR, Laws EA, Follows MJ and Siegel DA (2007) Modeling and prediction of marine microbial populations in the genomic era. Oceanography 20: 155–167Google Scholar
  100. Hunt Jr ER, Piper SC, Nemani R, Keeling CD, Otto RD and Running SW (1996) Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Global Biogeochem Cy 10: 431–456CrossRefGoogle Scholar
  101. Huot Y, Babin M, Bruyant F, Grob C, Twardowski MS and Claustr H (2007) Relationship between photosyn-thetic parameters and different proxies of phytoplank-ton biomass in the subtropical ocean. Biogeosciences 4: 853–868Google Scholar
  102. Hutchins DA, Fu FX, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW and Mulholland MR (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52: 1293–1304Google Scholar
  103. Jeffrey SW, Mantoura RFC and Wright SW (1997) Phyto-plankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO, Paris, FranceGoogle Scholar
  104. Jenkins JP, Richardson AD, Braswell BH, Ollinger SV, Hollinger DY and Smith M-L (2007) Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agr Forest Meteorol 143: 64–79CrossRefGoogle Scholar
  105. Global iron connections between desert dust, ocean bio-geochemistry, and climate. Science 308: 67–71PubMedCrossRefGoogle Scholar
  106. Justice CO, Townshend JRG, Holben BN and Tucker CJ (1985) Phenology of global vegetation using meteorological satellite data. Int J Remote Sens 8: 1271–1318CrossRefGoogle Scholar
  107. Kaduk J and Heimann M (1996) A prognostic phenology scheme for global terrestrial carbon cycle models. Climate Res 6: 1–19CrossRefGoogle Scholar
  108. Kamykowski D, Zentara SJ, Morrison JM and Switzer AC (2002) Dynamic global patterns of nitrate, phosphate, silicate, and iron availability and phytoplankton community composition from remote sensing data. Global Bio-geochem Cy 16: NO. 4, 1077Google Scholar
  109. Kathuroju N, White MA, Symanzik J, Schwartz MD, Powell JA and Nemani RR (2007) On the use of the advanced very high resolution radiometer for development of prognostic land surface phenology models. Ecol Modell 201: 144–156CrossRefGoogle Scholar
  110. Knops JMH and Reinhart K (2000) Specific leaf area along a nitrogen fertilization gradient. Am Midl Nat 144: 265–272CrossRefGoogle Scholar
  111. Knorr W and Kattge J (2005) Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling. Global Change Biol 11: 1333–1351CrossRefGoogle Scholar
  112. Koblizek M, Masin M, Ras J, Poulton AJ and Prášil O (2007) Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ Microbiol 9: 2401–2406PubMedCrossRefGoogle Scholar
  113. Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C and Falkowski PG (2001) Contribution of aerobic photo-heterotrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495PubMedCrossRefGoogle Scholar
  114. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S and Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cy 19: GB1015CrossRefGoogle Scholar
  115. Kucharik CJ, Foley JA, Delire C, Fisher VA, Coe MT, Lenters JD, Young-Molling C and Ramankutty N (2000) Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure. Global Biogeochem Cy 14: 795–825CrossRefGoogle Scholar
  116. Kucharik CJ, Barford CC, El Maayar M, Wofsy SC, Monson RK and Baldocchi DD (2006) A multiyear evaluation of a Dynamic Global Vegetation Model at three Ameriflux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange. Ecol Modell 196: 1–31CrossRefGoogle Scholar
  117. Kull O and Kruijt B (1998) Leaf photosynthetic light response: A mechanistic model for scaling photosynthesis to leaves and canopies. Funct Ecol 12: 767–777CrossRefGoogle Scholar
  118. Lami R, Cottrell MT, Ras J, Ulloa O, Obernosterer I, Claustre H, Kirchman DL and Lebaron P (2007) High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean. Appl Environ Microbiol 73: 4198–4205PubMedCrossRefGoogle Scholar
  119. Lapeyre G and Klein P (2006) Impact of the small-scale elongated filaments on the oceanic vertical pump. J Mar Res 64: 835–851CrossRefGoogle Scholar
  120. Laws EA, Falkowski PG, Smith WO, Ducklow H and McCarthy JJ (2000a) Temperature effects on export production in the open ocean. Global Biogeochem Cy 14: 1231–1246CrossRefGoogle Scholar
  121. Laws EA, Landry MR, Barber RT, Campbell L, Dickson ML and Marra J (2000b) Carbon cycling in primary production bottle incubations: Inferences from grazing experiments and photosynthetic studies using C-14 and O-18 in the Arabian Sea. Deep-Sea Res Pt II 47: 1339–1352CrossRefGoogle Scholar
  122. Le Quéré C, Harrison SP, Prentice IC, Buitenhuis ET, Aumont O, Bopp L, Claustre H, Cotrim Da Cunha L, Geider R, Giraud X, Klaas C, Kohfeld KE, Legendre L, Manizza M, Platt T, Rivkin RB, Sathyendranath S, Uitz J, Watson AJ and Wolf-Gladrow D (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biol 11: 2016–2040Google Scholar
  123. Leuning R (1995) A critical appraisal of a coupled stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18: 339–355CrossRefGoogle Scholar
  124. Litchman E, Klausmeier CA, Schofield OM and Falkowski PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecol Lett 10: 1170–1181PubMedCrossRefGoogle Scholar
  125. Liu X-Y, Xiao H-Y, Liu C-Q and Li Y-Y (2007) δ13C and δ15N of moss Haplocadium microphyllum (Hedw.) Broth. for indicating growing environment variation and canopy retention on atmospheric nitrogen deposition. Atmos Environ 41: 4897–4907CrossRefGoogle Scholar
  126. Lloyd J, Bird MI, Veenendaal E and Kruijt B (2001) Should phosphorus availability be constraining moist tropical forest responses to increasing CO2 concentrations? In: Schulze E-D, Harrison SP, Heimann M, Holland EA, Lloyd J, Prentice IC and Schimel D (eds) Global Bio-geochemical Cycles in the Climate System, pp 96–114. Academic, San Diego, CA, USAGoogle Scholar
  127. Lobell BD, Hicke JA, Asner GP, Field CB, Tucker CJ and Los O (2002) Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–98. Global Change Biol 8: 722–735CrossRefGoogle Scholar
  128. Long SP (1999) Environmental responses. In: Sage RF and Monson RK (eds) C4 Plant Biology, pp. 215–249. Academic, San Diego, CACrossRefGoogle Scholar
  129. Longhurst A, Sathyendranath S, Platt T and Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17: 1245–1271CrossRefGoogle Scholar
  130. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L and Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int J Remote Sens 21: 1303–1330CrossRefGoogle Scholar
  131. MacIntyre HL, Kana TM, Anning T and Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38: 17–38CrossRefGoogle Scholar
  132. Maritorena S, DA Siegel and AR Peterson (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Optics 41: 2705–2714CrossRefGoogle Scholar
  133. Marrari M, Hu CM and Daly K (2006) Validation of SeaW-iFS chlorophyll a concentrations in the Southern Ocean: A revisit. Remote Sens Environ 105: 367–375CrossRefGoogle Scholar
  134. Martínez-Sánchez JL (2003) Nitrogen and phosphorus resorption in trees of a neotropical rain forest. J Trop Ecol 19: 465–468CrossRefGoogle Scholar
  135. McGillicuddy DJ, Robinson AR, Siegel DA, Jannasch HW, Johnson R, Dickeys T, McNeil J, Michaels AF and Knap AH (1998) Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394: 263–266CrossRefGoogle Scholar
  136. McGillicuddy Jr DJ, Anderson LA, Doney SC and Maltrud ME (2003) Eddy-driven sources and sinks of nutrients in the upper ocean: Results from a 0.1 degrees resolution model of the North Atlantic. Global Biogeochem Cy 17: NO. 2, 1035Google Scholar
  137. McGillicuddy Jr DJ, Anderson LA, Bates NR, Bibby T, Buesseler KO, Carlson CA, Davis CS, Ewart C, Falkowski PG, Goldthwait SA, Hansell DA, Jenkins WJ, Johnson R, Kosnyrev VK, Ledwell JR, Li QP, Siegel DA and SteinbergDK (2007) Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316: 1021–1026PubMedCrossRefGoogle Scholar
  138. McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ and Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem Cy 15: 183–206CrossRefGoogle Scholar
  139. McWilliam A-LC, Roberts JM, Cabral OMR, Leitao, MVBR, de Costa, ACL, Maitelli, GT and Zampa-roni CAGP (1993) Leaf area index and above-ground biomass of terra firme rain forest and adjacent clearing in Amazonia. Funct Ecol 7: 310–317CrossRefGoogle Scholar
  140. Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ and Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363: 234–240CrossRefGoogle Scholar
  141. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9: 747–766CrossRefGoogle Scholar
  142. Monteith JL (1977) Climate efficiency of crop production in Britain. Philos Trans R Soc B 281: 277–294CrossRefGoogle Scholar
  143. Moore JK and Doney SC (2007) Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Global Bio-geochem Cy 21: GB2001CrossRefGoogle Scholar
  144. Moore JK, Doney SC and Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cy 18: GB4028CrossRefGoogle Scholar
  145. Moore JK, Doney SC, Lindsay K, Mahowald N and Michaels AF (2006a) Nitrogen fixation amplifies the ocean bio-geochemical response to decadal timescale variations in mineral dust deposition. Tellus B 58: 560–572CrossRefGoogle Scholar
  146. Moore CM, Mills, MM, Milne, A, Langlois, R, Achterberg, EP, Lochte K, Geider RJ and La Roche J (2006b) Iron supply limits primary productivity during spring bloom development in the central North Atlantic. Global Change Biol 12: 626–634CrossRefGoogle Scholar
  147. Morel A (1991) Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Prog Oceanogr 26: 263–306CrossRefGoogle Scholar
  148. Morel A and Maritorena S (2001) Bio-optical properties of oceanic waters: A reappraisal. J Geophys Res 106: 7163–7180CrossRefGoogle Scholar
  149. Morel A, Antoine D, Babin M and Dandonneau Y (1996) Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program): The impact of natural variations in photosynthetic parameters on model predictive skill. Deep-Sea Res Pt I 43: 1273–1304CrossRefGoogle Scholar
  150. Morel A, Huot Y, Gentili B, Werdell PJ, Hooker SB and Franz BA (2007) Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens Environ 111: 69–88CrossRefGoogle Scholar
  151. Morgan JA, Milchunas DG, LeCain DR, West M and Mosier AR (2007) Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. Proc Natl Acad Sci USA 104: 14724–14729PubMedCrossRefGoogle Scholar
  152. Morisette JT, Baret F, Privette JL, Myneni RB, Nickeson JE, Garrigues S, Shabanov NV, Weiss M, Fernandes RA, Leblanc SG, Kalacska M, Sanchez-Azofeifa GA, Chubey M, Rivard B, Stenberg P, Rautiainen M, Voipio P, Manninen T, Pilant AN, Lewis TE, Iiames JS, Colombo R, Meroni M, Busetto L, Cohen WB, Turner DP, Warner ED, Petersen GW, Seufert G and Cook R (2006) Validation of global moderate-resolution LAI products: A framework proposed within the CEOS land product validation subgroup. IEEE T Geosci Remote 44: 1804–1817CrossRefGoogle Scholar
  153. Myneni RB, Keeling CD, Tucker CJ, Asrar G and Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981–1991. Nature 386: 698–702CrossRefGoogle Scholar
  154. Najjar RG, Jin X, Louanchi F, Aumont O, Caldeira K, Doney SC, Dutay JC, Follows M, Gruber N, Joos F, Lindsay K, Maier-Reimer E, Matear RJ, Matsumoto K, Monfray P, Mouchet A, Orr JC, Plattner GK, Sarmiento JL, Schlitzer R, Slater RD, Weirig MF, Yamanaka Y and Yool A (2007) Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Global Biogeochem Cy 21: GB3007CrossRefGoogle Scholar
  155. Neilson RP (1995) A model for predicting continental-scale vegetation distribution and water balance. Ecol Appl 5: 362–385CrossRefGoogle Scholar
  156. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB and Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300: 1560–1563PubMedCrossRefGoogle Scholar
  157. New M, Lister D, Hulme M and Makin I (2002) High-resolution data set of surface climate over global land areas. Climate Res 21: 1–25CrossRefGoogle Scholar
  158. O'Reilly JE, Maritorena S, Mitchell BG, Siegel DA, Carder KL, Garver SA, Kahru M and McClain C (1998) Ocean color chlorophyll algorithms for SeaWiFS. J Geophys Res 103: 24937–24953CrossRefGoogle Scholar
  159. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Tot-terdell IJ, Weirig MF, Yamanaka Y and Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686PubMedCrossRefGoogle Scholar
  160. Parton WJ, Neff J and Vitousek PM (2005) Modelling Phosphorus, Carbon and Nitrogen Dynamics in Terrestrial Ecosystems. In: Turner BL, Frossard E and Baldwin DS (eds) Organic Phosphorus in the Environment, pp. 325–334. CAB International, OxfordshireGoogle Scholar
  161. Pearcy RW and Ehleringer J (1984) Comparative eco-physiology of C3 and C4 plants. Plant Cell Environ 7: 1–13CrossRefGoogle Scholar
  162. Pirazzini R, Nardino M, Orsini A, Calzolari F, Georgiadis T and Levizzani V (1998) Parameterization of the downward longwave radiation from clear and cloudy skies at Ny Ålesund (Svalbard). Conference Presentation to the International Radiation Symposium (IRS), 24–29 July, 2000, St. Petersburg, Russia. PDF: acta13.pdf
  163. Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clima-tol 23: 479–510CrossRefGoogle Scholar
  164. Platt T (1986) Primary production of the ocean water column as a function of surface light intensity: Algorithms for remote sensing. Deep-Sea Res 33: 149–163CrossRefGoogle Scholar
  165. Platt T, Broomhead DS, Sathyendranath S, Edwards AM and Murphy EJ (2003) Phytoplankton biomass and residual nitrate in the pelagic ecosystem. Proc R Soc A 459: 1063–1073CrossRefGoogle Scholar
  166. Polovina JJ, Howell EA and Abecassis M (2008) Ocean's least productive waters are expanding. Geophys Res Lett 35: L03618CrossRefGoogle Scholar
  167. Pons TL and Bergkotte M (1996) Nitrogen allocation in response to partial shading of a plant: Possible mechanisms. Physiol Plantarum 98: 571–577CrossRefGoogle Scholar
  168. Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104–105: 77–97CrossRefGoogle Scholar
  169. Popova EE, Coward AC, Nurser GA, de Cuevas B, Fasham MJR and Anderson TR (2006a) Mechanisms controlling primary production in a global ecosystem model. I: Validation of the biological simulation. Ocean Science 2: 249–266Google Scholar
  170. Popova EE, Coward AC, Nurser GA, de Cuevas B and Anderson TR (2006b) Mechanisms controlling primary production in a global ecosystem model. II: The role of upper ocean short-term periodic and episodic events. Ocean Science 2: 267–279CrossRefGoogle Scholar
  171. Post WM, King AW and Wullschleger SD (1997) Historical variations in terrestrial biospheric carbon storage. Global Biogeochem Cy 11: 99–109CrossRefGoogle Scholar
  172. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochem Cy 7: 811–841CrossRefGoogle Scholar
  173. Prince SD (1991) A model of regional primary production for use with coarse resolution satellite data. Int J Remote Sens 12: 1313–1330CrossRefGoogle Scholar
  174. Prince SD and Goward SN (1995) Global primary production: A remote sensing approach. J Biogeogr 22: 815–835CrossRefGoogle Scholar
  175. Randall DA, Dazlich DA, Zhang C, Denning AS, Sellers PJ, Tucker CJ, Bounoua L, Berry JA, Collatz GJ, Field CB, Los SO, Justice CO and Fung I (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part III: The greening of the Colorado State University General Circulation Model. J Climate 9: 738–763CrossRefGoogle Scholar
  176. Randerson JT, Thompson MV, Conway TJ, Fung IY and Field CB (1997) The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem Cy 11: 535–560CrossRefGoogle Scholar
  177. Randerson JT, Van der Werf GR, Collatz GJ, Giglio L, Still CJ, Kasibhatla P, Miller JB, White JWC, DeFries RS and Kasischke ES (2005) Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2. Global Biogeochem Cy 19: GB2019CrossRefGoogle Scholar
  178. Ricchiazzi P, Yang SR, Gautier C and Sowle D (1998) SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere. B Am Meteorol Soc 79: 2101–2114CrossRefGoogle Scholar
  179. Riebesell U, Wolf-Gladrow DA and Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249–363CrossRefGoogle Scholar
  180. Riser SC and Johnson KS (2008) Net production of oxygen in the subtropical ocean. Nature 451: 323–325PubMedCrossRefGoogle Scholar
  181. Ruimy A, Jarvis PG, Baldocchi DD and Saugier B (1995) CO2 fluxes over plant canopies and solar radiation: A review. Adv Ecol Res 26: 1–68CrossRefGoogle Scholar
  182. Ruimy A, Kergoat L and Bondeau A (1999) Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light-use efficiency. Global Change Biol 5: 56–64CrossRefGoogle Scholar
  183. Running SW and Hunt Jr ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In: Ehleringer JR and Field CB (eds) Scaling physiological processes: Leaf to globe, pp. 141–158. Academic, San Diego, CAGoogle Scholar
  184. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M and Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary production. Bio-science 54, 547–560Google Scholar
  185. Sage RF and Monson RK (1999) C4 Plant Biology. Academic, San Diego, CAGoogle Scholar
  186. Sage RF, Wedin DA and Li M (1999) The Biogeography of C4 Photosynthesis: Patterns and Controlling Factors. Academic, New YorkGoogle Scholar
  187. Sarmiento JL, Slater RD, Fasham MJR, Ducklow HW, Toggweiler JR and Evans GT (1993) A seasonal three dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochem Cy 7: 417–450CrossRefGoogle Scholar
  188. Sathyendranath S and Platt T (1989) Remote sensing of ocean chlorophyll: Consequence of non-uniform pigment profile. Appl Optics 28: 490–495CrossRefGoogle Scholar
  189. Sathyendranath S and Platt T (2007) Spectral effects in bio-optical control on the ocean system. Oceanologia 49: 5–39Google Scholar
  190. Sathyendranath S, Longhurst AR, Caverhill CM and Platt T (1995) Regionally and seasonally differentiated primary production in the North Atlantic. Deep-Sea Res Pt I 42: 1773–1802CrossRefGoogle Scholar
  191. Sato H, Itoh A and Kohyama T (2007) SEIB-DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecol Model 200: 279–307CrossRefGoogle Scholar
  192. Schmittner A, Oschlies A, Matthews HD and Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem Cy 22: GB1013CrossRefGoogle Scholar
  193. Schwalm CR, Black TA, Amiro BD, Arain MA, Barr AG, Bourque CP-A, Dunn AL, Flanagan LB, Giasson M-A, Lafleur PM, Margolis HA, McCaughey JH, Orchansky AL and Wofsy SC (2006) Photosynthetic light use efficiency of three biomes across an east-west continental-scale transect in Canada. Agr Forest Meteorol 140: 269–286CrossRefGoogle Scholar
  194. Sellers PJ, Hall FG, Asrar G, Strebel DE and Murphy RE (1992) An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). J Geophys Res 97(D17): 18345–18371Google Scholar
  195. Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD and Bounoua L (1996a) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J Climate 9: 676–705CrossRefGoogle Scholar
  196. Sellers PJ, Los SO, Tucker CJ, Justice CO, Dazlich DA, Collatz GJ and Randall DA (1996b) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J Climate 9: 706–737CrossRefGoogle Scholar
  197. Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. Bot Rev 51: 53–105CrossRefGoogle Scholar
  198. Sigman DM and Haug GH (2003) The biological pump in the past. In: Elderfield H (ed) Treatise on Geochemistry Volume 6, pp 491–528. Elsevier, AmsterdamGoogle Scholar
  199. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT, Thonicke K and Venevsky S (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol 9: 161–185CrossRefGoogle Scholar
  200. Slayback DA, Pinzon JE, Los SO and Tucker CJ (2003) Northern hemisphere photosynthetic trends 1982–1999. Global Change Biol 9: 1–15CrossRefGoogle Scholar
  201. Smyth TJ, Tilstone GH and Groom SB (2005) Integration of radiative transfer into satellite models of ocean primary production. J Geophys Res 110: C10014CrossRefGoogle Scholar
  202. Spitters, CJT, Toussaint, HAJM and Goudriaan, J (1986) Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis. Part I. Components of incoming radiation. Agr Forest Meteorol 38: 217–229CrossRefGoogle Scholar
  203. Stomp M, Huisman J, Voros L, Pick FR, Laamanen M, Haverkamp T and Stal LJ (2007) Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol Lett 10: 290–298PubMedCrossRefGoogle Scholar
  204. Stramski D and Mobley CD (1997) Effects of microbial particles on oceanic optics: A database of single-particle optical properties. Limnol Oceanogr 42: 538–549Google Scholar
  205. Switzer AC, Kamykowski D and Zentara SJ (2003) Mapping nitrate in the global ocean using remotely sensed sea surface temperature. J Geophys Res 108: NO. C8, 3280Google Scholar
  206. Taub DR (2002) Analysis of interspecific variation in plant growth responses to nitrogen. Can J Bot 80: 34–41CrossRefGoogle Scholar
  207. Thornton PE and Zimmerman NE (2007) An improved canopy integration scheme for a land surface model with prognostic canopy structure. J Climate 20: 3902–3923CrossRefGoogle Scholar
  208. Thornton PE, Lamarque J-F, Rosenbloom NA and Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cy 21: GB4018CrossRefGoogle Scholar
  209. Tortell PD, DiTullio GR, Sigman DM and Morel FMM (2002) CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Mar Ecol-Prog Ser 236: 37–43CrossRefGoogle Scholar
  210. Trumbore S (2006) Carbon respired by terrestrial ecosystems - recent progress and challenges. Global Change Biol 12: 141–153CrossRefGoogle Scholar
  211. Tucker CJ, Townshend JRG and Goff TE (1985) African land cover classification using satellite data. Science 227: 369–375PubMedCrossRefGoogle Scholar
  212. Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T, Gower ST and Gregory M (2003) A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biol 9: 383–395CrossRefGoogle Scholar
  213. Uitz J, Claustre H, Morel A and Hooker S (2006) Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J Geophys Res 111: C08005CrossRefGoogle Scholar
  214. VEMAP Members (Melillo JM, Borchers J, Chaney J, Fisher H, Fox S, Haxeltine A, Janetos A, Kicklighter DW, Kittel TGF, McGuire AD, McKeown R, Neilson R, Nemani R, Ojima DS, Painter T, Pan Y, Parton WJ, Pierce L, Pitelka L, Prentice C, Rizzo B, Rosenbloom NA, Running S, Schimel DS, Sitch S, Smith T and Woodward, I) (1995) Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochem-istry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem Cy 9: 407–437CrossRefGoogle Scholar
  215. Vitousek P (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65: 285–298CrossRefGoogle Scholar
  216. Vostral CB, Boyce RL and Friedland AJ (2002) Winter water relations of New England conifers and factors influencing their upper elevational limits. I. Measurements. Tree Phys-iol 22: 793–800Google Scholar
  217. Wand SJE, Midgley GF, Jones MH and Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: A meta-analytic test of current theories and perceptions. Global Change Biol 5: 723–741CrossRefGoogle Scholar
  218. Wang YP, Baldocchi D, Leuning R, Falge E and Vesala T (2007) Estimating parameters in a land-surface model by applying nonlinear inversion to eddy covariance flux measurements from eight fluxnet sites. Global Change Biol 13: 652–670CrossRefGoogle Scholar
  219. Ward BA and Waniek JJ (2007) Phytoplankton growth conditions during autumn and winter in the Irminger Sea, North Atlantic. Mar Ecol-Prog Ser 334: 47–61CrossRefGoogle Scholar
  220. Waring RH, Law BE, Goulden ML, Bassow SL, McCreight RW, Wofsy SC and Bazzaz FA (1995) Scaling gross ecosystem production at Harvard Forest with remote sensing: A comparison of estimates from a constrained quantum-use efficiency model and eddy correlation. Plant Cell Environ 18: 1201–1213CrossRefGoogle Scholar
  221. Warnant P, François L, Strivay D and Gérard J-C (1994) CARAIB: A global model of terrestrial biological productivity. Global Biogeochem Cy 8: 255–270CrossRefGoogle Scholar
  222. Wedin DA and Tilman D (1996a) Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274: 1720–1723CrossRefGoogle Scholar
  223. Wedin DA and Tilman D (1996b) Spatial and temporal distribution of Trichodesmium blooms in the world's oceans. Global Biogeochem Cy 20: GB4016Google Scholar
  224. Westberry T, Behrenfeld MJ, Siegel DA and Boss E (2008) Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochem Cy 22: GB2024CrossRefGoogle Scholar
  225. White MA, Thornton PE, Running SW and Nemani RR (2000) Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net primary production controls. Earth Interactions 4: 1–85CrossRefGoogle Scholar
  226. Williams PJL, Morris PJ and Karl DM (2004) Net community production and metabolic balance at the oligotrophic ocean site, Station ALOHA. Deep-Sea Res Pt I 51: 1563–1578Google Scholar
  227. Wolf-Gladrow DA, Riebesell U, Burkhardt S and Jelle B (1999) Direct effects of CO2 concentration on growth and isotopic composition of marine phytoplankton. Tellus B 51: 461–476CrossRefGoogle Scholar
  228. Wong SC, Cowan IR and Farquhar GD (1979) Stomatal conductance correlates with photosynthesis capacity. Nature 282: 424–426CrossRefGoogle Scholar
  229. Wood AM (1985) Adaptation of photosynthetic apparatus of marine ultraplankton to natural light fields. Nature 316: 253–255CrossRefGoogle Scholar
  230. Woods JD and Onken R (1982) Diurnal variation and primary production in the ocean — preliminary results of a Lagrangian ensemble model. J Plankton Res 4: 735–756CrossRefGoogle Scholar
  231. Woodward FI and Lomas MR (2004) Vegetation dynamics — simulating responses to climatic change. Biol Rev 79: 643–670PubMedCrossRefGoogle Scholar
  232. Woodward FI, Smith TM and Emanuel WR (1995) A global land primary productivity and phytogeography model. Global Biogeochem Cy 9: 471–490CrossRefGoogle Scholar
  233. Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants — a retrospective analysis of the A/Ci curves from 109 species. J Exp Bot 44: 907–920CrossRefGoogle Scholar
  234. Xiao X, Melillo JM, Kicklighter DW, McGuire AD, Prinn RG, Wang C, Stone PH and Sokolov A (1998) Transient climate change and net ecosystem production of the terrestrial biosphere. Global Biogeochem Cy 12: 345–360CrossRefGoogle Scholar
  235. Xue Y, Sellers PJ, Kinter JL and Shukla J (1991) A simplified biosphere model for global climate studies. J Climate 4: 345–364CrossRefGoogle Scholar
  236. Yang W, Huang D, Tan B, Stoeve JC, Shabanov NV, Knyazikhin Y, Nemani RR and Myneni RB (2006) Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the Terra MODIS sensor: 2000–2005. IEEE T Geosci Remote 44: 1829–1842CrossRefGoogle Scholar
  237. Zhao M, Heinsch FA, Nemani RR and Running SW (2005) Improvement of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95: 164–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Andrew D. Friend
    • 1
  • Richard J. Geider
    • 2
  • Michael J. Behrenfeld
    • 3
  • Christopher J. Still
    • 4
  1. 1.Department of GeographyUniversity of CambridgeUK
  2. 2.Department of Biological SciencesUniversity of EssexColchesterUK
  3. 3.Department of Botany and Plant PathologyOregon State UniversityCorvallisUSA
  4. 4.Department of Geography and Institute for Computational Earth System ScienceUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations