Origin of the Saturn System

  • Torrence V. JohnsonEmail author
  • Paul R. Estrada


Cassini mission results are providing new insights into the origin of the Saturn system and giant planet satellite systems generally. The chapter discusses current models for the formation of giant planets and their satellites and reviews major Cassini findings which help advance our understanding of the system's formation and evolution to its current state.


Giant Planet Solar Nebula Outer Planet Satellite Formation Outer Solar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge Jack J. Lissauer (NASA Ames Research Center) for many useful discussions and comments on an earlier draft of this work.

A portion of this work (TVJ) has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.


  1. Alibert, Y., et al., 2005. Modeling the Jovian subnebula — I. Thermo-dynamic conditions and migration of proto-satellites. Astronomy & Astrophysics. 439, 1205–1213.10.1051/0004-6361:20052841.ADSGoogle Scholar
  2. Amelin, Y., et al., 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science. 297, 1678–1683.ADSGoogle Scholar
  3. Anders, E., Grevesse, N., 1989. Abundances of the elements — mete-oritic and solar. Geochimica Et Cosmochimica Acta. 53, 197–214.ADSGoogle Scholar
  4. Anderson, J. D., et al., 2001a. Io's gravity field and interior structure. Journal of Geophysical Research-Planets. 106, 32963–32969.Google Scholar
  5. Anderson, J. D., et al., 2001b. Shape, mean radius, gravity field, and interior structure of Callisto. Icarus. 153, 157–161.ADSGoogle Scholar
  6. Anderson, J. D., et al., 2005. Amalthea's density is less than that of water. Science. 308, 1291–1293.ADSGoogle Scholar
  7. Anderson, J. D., et al., 1996a. Gravitational constraints on the internal structure of Ganymede. Nature. 384, 541–543.ADSGoogle Scholar
  8. Anderson, J. D., et al., 1996b. Galileo gravity results and the internal structure of Io. Science. 272, 709–712.ADSGoogle Scholar
  9. Anderson, J. D., et al., 1997a. Europa's differentiated internal structure: Inferences from two Galileo encounters. Science. 276, 1236–1239.ADSGoogle Scholar
  10. Anderson, J. D., et al., 1997b. Gravitational evidence for an undifferen-tiated Callisto. Nature. 387, 264–266.ADSGoogle Scholar
  11. Anderson, J. D., Schubert, G., 2007. Saturn's satellite Rhea is a homogeneous mix of rock and ice. Geophysical Research Letters. 34, L02202–L02202.Google Scholar
  12. Anderson, J. D., et al., 1998a. Distribution of rock, metals, and ices in Callisto. Science. 280, 1573–1576.ADSGoogle Scholar
  13. Anderson, J. D., et al., 1998b. Europa's differentiated internal structure: Inferences from four Galileo encounters. Science. 281, 2019–2022.ADSGoogle Scholar
  14. Asplund, M., et al., 2006. The solar chemical composition. Nuclear Physics A. 777, 1–4.10.1016/j.nuclphysa.2005.06.010.ADSGoogle Scholar
  15. Ayliffe, B. A., Bate, M. R., 2009. Circumplanetary disc properties obtained from radiation hydrodynamical simulations of gas accretion by protoplanets. Monthly Notices of the Royal Astronomical Society. 397, 657–665.ADSGoogle Scholar
  16. Barr, A. C., Canup, R. M., 2008. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus. 198, 163–177.10.1016/j.icarus.2008.07.004.ADSGoogle Scholar
  17. Benz, W., et al., 1988. Collisional stripping of mercurys mantle. Icarus. 74, 516–528.ADSGoogle Scholar
  18. Bodenheimer, P., et al., Models of the in situ formation of detected ex-trasolar giant planets. 2000, pp. 2–14.Google Scholar
  19. Boss, A. P., 2007. The solar nebula. In: A. M. Davis, (Ed.), Treatise on Geochemistry: Vol. 1, Meteorites, Comets and Planets. Elsevier Pergamon.doi:10.1016/B0–08–043751–6/01061–6.Google Scholar
  20. Brown, M. E., Schaller, E. L., 2007. The mass of dwarf planet Eris. Science. 316, 1585–1585.10.1126/science.1139415.ADSGoogle Scholar
  21. Bryden, G., et al., 1999. Tidally induced gap formation in protostellar disks: Gap clearing and suppression of protoplanetary growth. As-trophysical Journal. 514, 344–367.ADSGoogle Scholar
  22. Bryden, G., et al., 2000. Protoplanetary formation. I. Neptune. Astro-physical Journal. 544, 481–495.ADSGoogle Scholar
  23. Buie, M. W., et al., 2006. Orbits and photometry of Pluto's satellites: Charon, S/2005 P1, and S/2005 P2. Astronomical Journal. 132, 290–298.ADSGoogle Scholar
  24. Cameron, A. G. W., 1978. Physics of primitive solar accretion disk. Moon and the Planets. 18, 5–40.ADSGoogle Scholar
  25. Cameron, A. G. W., 1981. Elementary and nuclidic abundances in the solar system. In: C. A. Barns, et al., (Eds.), Essays in Nuclear Astrophysics. Cambridge University Press, New York.Google Scholar
  26. Canup, R. M., Ward, W. R., 2002. Formation of the Galilean satellites: Conditions of accretion. The Astronomical Journal. 124, 3404– 3423.ADSGoogle Scholar
  27. Canup, R. M., Ward, W. R., 2009. Origin of Europa and the Galilean satellites. In: W. McKinnon, et al., (Eds.), Europa. University of Arizona Press, Tucson.Google Scholar
  28. Castillo-Rogez, J. C., et al., 2007. Iapetus'geophysics: Rotation rate, shape, and equatorial ridge. Icarus. 190, 179–202.10.1016/ j.icarus.2007.02.018.ADSGoogle Scholar
  29. Charnoz, S., Morbidelli, A., 2003. Coupling dynamical and collisional evolution of small bodies: An application to the early ejection of planetesimals from the Jupiter-Saturn region. Icarus. 166, 141– 156.10.1016/s0019–1035(03)00213–6.ADSGoogle Scholar
  30. Charnoz, S., et al., 2009 Did Saturn's rings form during the Late Heavy Bombardment? Icarus. 199, 413–428.10.1016/j.icarus.2008.10.019.ADSGoogle Scholar
  31. Consolmagno, G. J., Lewis, J. S., 1977. Preliminary thermal history models of icy satellites. In: J. A. Burns, (Ed.), Planetary Satellites. University of Arizona Press, Tucson, 492–500.Google Scholar
  32. Consolmagno, G. J., Lewis, J. S., 1978. Evolution of icy satellite interiors and surfaces. Icarus. 34, 280–293.ADSGoogle Scholar
  33. Coradini, A., et al., 1989. Formation of the satellites of the outer solar system — Sources of their atmospheres. In: S. Atreya, et al., (Eds.), Origin and Evolution of Planetary and Satellite Atmospheres. University of Arizona Press, Tucson, pp. 723–762.Google Scholar
  34. Cuzzi, J. N., et al., 1993. Particle gas-dynamics in the midplane of a protoplanetary nebula. Icarus. 106, 102–134.ADSGoogle Scholar
  35. Cuzzi, J. N., Zahnle, K. J., 2004. Material enhancement in protoplane-tary nebulae by particle drift through evaporation fronts. Astrophys-ical Journal. 614, 490–496.ADSGoogle Scholar
  36. D'Angelo, G., et al., 2003. Thermohydrodynamics of circumstellar disks with high-mass planets. Astrophysical Journal. 599, 548–576.ADSGoogle Scholar
  37. Davis, A. M. (Ed.), 2004. Treatise on Geochemistry: Vol 1. Me teorites, Comets, and Planets. Elsevier, Pergamon, Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore-Sydney-Tokyo.Google Scholar
  38. Dominik, C., et al., 2007. Growth of dust as the initial step toward planet formation. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 783–800.Google Scholar
  39. Dougherty, M. K., et al., 2006. Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science. 311, 1406–1409.ADSGoogle Scholar
  40. Durham, W. B., et al., 2005. Cold compaction of water ice. Geophysical Research Letters. 32.L18202, 10.1029/2005gl023484.ADSGoogle Scholar
  41. Durisen, R. H., et al., 2007. Gravitational instabilities in gaseous pro-toplanetary disks and implications for giant planet formation. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 607–622.Google Scholar
  42. Dyudina, U. A., et al., 2007. Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006. Icarus. 190, 545–555.10.1016/j.icarus.2007.03.035.ADSGoogle Scholar
  43. Espaillat, C., et al., 2007. On the diversity of the Taurus transitional disks: UX Tauri A and LkCa 15. Astrophysical Journal. 670, L135–L138.ADSGoogle Scholar
  44. Estrada, P. R., Mosqueira, I., 2006. A gas-poor planetesimal capture model for the formation of giant planet satellite systems. Icarus. 181, 486–509.10.1016/j.icarus.2005.11.006.ADSGoogle Scholar
  45. Estrada, P. R., et al., 2009. Formation of Jupiter and conditions for accretion of the Galilean satellites. In: W. McKinnon, et al., (Eds.), Europa. University of Arizona Press, Tucson.Google Scholar
  46. Fanale, F. P., et al., 1977. Io's surface and the histories of the Galilean satellites. In: J. A. Burns, (Ed.), Planetary Satellites. University of Arizona Press, Tucson, pp. 379–405.Google Scholar
  47. Goldreich, P., Tremaine, S., 1980. Disk-satellite interactions. Astro-physical Journal. 241, 425–441.MathSciNetADSGoogle Scholar
  48. Goldreich, P., et al., 2004. Final stages of planet formation. Astrophys-ical Journal. 614, 497–507.ADSGoogle Scholar
  49. Gomes, R., et al., 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature. 435, 466–469.ADSGoogle Scholar
  50. Grevesse, N., et al., 2007. The solar chemical composition. Space Science Reviews. 130, 105–114.10.1007/s11214–007–9173–7.ADSGoogle Scholar
  51. Grossman, L., 1972. Condensation in primitive solar nebula. Geochim-ica Et Cosmochimica Acta. 36, 597–619.ADSGoogle Scholar
  52. Grossman, L., Larimer, J. W., 1974. Early chemical history of solar-system. Reviews of Geophysics. 12, 71–101.ADSGoogle Scholar
  53. Halliday, A. N., 2007. The origin and earliest history of the Earth. In: A. M. Davis, (Ed.), Treatise on Geochemistry: Vol. 1. Meteorites, Comets, and Planets. Elsevier, Pergamon. doi:10.1016/B0– 08–043751–6/01070–7.Google Scholar
  54. Hansen, C. J., et al., 2006. Enceladus'water vapor plume. Science. 311, 1422–5.ADSGoogle Scholar
  55. Hubbard, W. B., Anderson, J. D., 1978. Possible flyby measurements of Galilean satellite interior structure. Icarus. 33, 336–341.ADSGoogle Scholar
  56. Hubickyj, O., et al., 2005. Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus. 179, 415– 431.10.1016/j.icarus.2005.06.021.ADSGoogle Scholar
  57. Iess, L., et al., 2007. Gravity field and interior of Rhea from Cassini data analysis. Icarus. 190, 585–593.ADSGoogle Scholar
  58. Jacobson, R. A., 2004. The orbits of the major Saturnian satellites and the gravity field of Saturn from spacecraft and earth-based observations. Astronomical Journal. 18, 492–501.ADSGoogle Scholar
  59. Jacobson, R. A., et al., 2006. The GM values of Mimas and Tethys and the liberation of methane. Astronomical Journal. 132, 711–713.ADSGoogle Scholar
  60. Jewitt, D. C., Sheppard, S. S., 2002. Physical properties of trans-Neptunian object (20000) Varuna. Astronomical Journal. 123, 2110–2120.ADSGoogle Scholar
  61. Jewitt, D., et al., 2007. Protostars and Planets V. University of Arizona Press, Tucson, pp. 863–878.Google Scholar
  62. Johnson, T. V., McGetchin, T. R., 1973. Topography on satellite surfaces and the shape of asteroids. Icarus. 18, 612–620ADSGoogle Scholar
  63. Johnson, T. V., Lunine, J. I., 2005. Saturn's moon Phoebe as a captured body from the outer Solar System. Nature. 435, 69–71.ADSGoogle Scholar
  64. Johnson, T. V., et al., 2007 Thermal and dynamical histories of Saturn's satellites: Evidence for the presence of short lived radioactive isotopes. In: R. Guandalini, et al., (Eds.), The Ninth Torino Workshop on Evolution and Nucleosynthesis in AGB Stars and The Second Perugia Workshop on Nuclear Astrophysics, Vol. 1001. American Institute of Physics, Perugia, Italy, pp. 262–268.Google Scholar
  65. Joswiak, D. J., et al., 2008. Mineralogical origins of Wild 2 comet particles collected by the Stardust spacecraft. Geochimica Et Cos-mochimica Acta. 72, A441–A441.ADSGoogle Scholar
  66. Kenyon, S. J., Luu, J. X., 1999. Accretion in the early outer solar system. Astrophysical Journal. 526, 465–470.ADSGoogle Scholar
  67. Khurana, K. K., et al., 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature. 395, 777–780.ADSGoogle Scholar
  68. Kivelson, M. G., et al., 1997. The magnetic field and magnetosphere of Ganymede. Geophysical Research Letters. 24, 2155–2158.ADSGoogle Scholar
  69. Kivelson, M. G., et al., 2000. Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science. 289, 1340– 1343.ADSGoogle Scholar
  70. Kivelson, M. G., et al., 1996. Discovery of Ganymede's magnetic field by the Galileo spacecraft. Nature. 384, 537–541.ADSGoogle Scholar
  71. Kivelson, M. G., et al., 1999. Europa and Callisto: Induced or intrinsic fields in a periodically varying plasma environment. Journal of Geophysical Research-Space Physics. 104, 4609–4625.Google Scholar
  72. Klahr, H., Kley, W., 2006. 3D-radiation hydro simulations of disk-planet interactions — I. Numerical algorithm and test cases. Astronomy & Astrophysics. 445, 747–758.10.1051/0004–6361:20053238.ADSGoogle Scholar
  73. Kokubo, E., Ida, S., 1998. Oligarchic growth of protoplanets. Icarus. 131, 171–178.ADSGoogle Scholar
  74. Kuiper, G. P., 1951. In: J. A. Hynek, (Ed.), Proceedings of a Topical Symposium. McGraw-Hill, New York, pp. 357–424.Google Scholar
  75. Leisner, J. S., et al., 2008. The interior of Iapetus: Constraints provided by the solar wind interaction. Eos Tans. AGU. 89 (53), Fall Meet. Suppl., Abstract P31C-08.Google Scholar
  76. Levison, H. F., et al., 2007. Planet migration in planetesimal disks. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 669–684.Google Scholar
  77. Levison, H. F., et al., 2008. Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus. 196, 258–273.10.1016/j.icarus.2007.11.035.ADSGoogle Scholar
  78. Lewis, J. S., 1971. Satellites of outer planets — their physical and chemical nature. Icarus. 15, 174–185.ADSGoogle Scholar
  79. Lewis, J. S., 1972. Low-temperature condensation from solar nebula. Icarus. 16, 241–252.ADSGoogle Scholar
  80. Lewis, J. S., 1973. Chemistry of outer solar system. Space Science Reviews. 14, 401–411.ADSGoogle Scholar
  81. Lewis, J. S., Prinn, R. G., 1980. Kinetic inhibition of Co and N-2 reduction in the solar nebula. Astrophysical Journal. 238, 357–364.ADSGoogle Scholar
  82. Lissauer, J. J., 1987. Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus. 69, 249–265.ADSGoogle Scholar
  83. Lissauer, J. J., 2001. Time for gas planets to grow. Nature. 409, 23–24.ADSGoogle Scholar
  84. Lissauer, J. J., Stevenson, D. J., 2007. Formation of giant planets. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 591–606.Google Scholar
  85. Lissauer, J. J., et al., 2009. Models of Jupiter's growth incorporating thermal and hydrodynamic constraints. Icarus. 199, 338– 350.doi:10.1016/j.icarus.2008.10.004.ADSGoogle Scholar
  86. Lorenz, R. D., et al., 2008. Titan's rotation reveals an internal ocean and changing zonal winds. Science. 319, 1649–1651.ADSGoogle Scholar
  87. Lunine, J. I., Atreya, S. K., 2008. The methane cycle on Titan. Nature Geoscience. 1, 159–164.ADSGoogle Scholar
  88. Lupo, M. J., Lewis, J. S., 1979. Mass-radius relationships in icy satellites. Icarus. 40, 157–170.ADSGoogle Scholar
  89. Mackenzie, R. A., et al., 2008. A non-hydrostatic Rhea. Geophysical Research Letters. 35, L05204–L05204.Google Scholar
  90. Makalkin, A. B., Dorofeeva, V. A., 2006. Models of the protosatellite disk of Saturn: Conditions for Titan's formation. Solar System Research. 40, 441–455.10.1134/s0038094606060013.ADSGoogle Scholar
  91. Makalkin, A. B., et al., 1999. Modeling the protosatellite circum-Jovian accretion disk: An estimate of the basic parameters. Solar System Research. 33, 456.ADSGoogle Scholar
  92. Matson, D. L., et al., 2007. Enceladus'plume: Compositional evidence for a hot interior. Icarus. 187, 569–73.ADSGoogle Scholar
  93. McKeegan, K. D., Davies, A. M., 1.16 Early solar system chronology. In: A. Davis, (Ed.), Treatise on Geochemistry: Vol. 1. Meteorites, Comets, and Planets. Elsevier, 2007.doi:10.1016/B0–08–043751– 6/01147–6.Google Scholar
  94. McKinnon, W. B., 1997. Mystery of Callisto: Is it undifferentiated? Icarus. 130, 540–543.ADSGoogle Scholar
  95. Merk, R., Prialnik, D., 2003. Early thermal and structural evolution of small bodies in the trans-Neptunian zone. Earth Moon and Planets. 92, 359–374.ADSGoogle Scholar
  96. Meyer, M. R., et al., 2007. Evolution of circumstellar disks around normal stars: Placing our solar system in context. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 573–588.Google Scholar
  97. Morbidelli, A., Crida, A., 2007. The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus. 191, 158– 171.10.1016/j.icarus.2007.04.001.ADSGoogle Scholar
  98. Morbidelli, A., et al., 2005. Chaotic capture of Jupiter's Trojan asteroids in the early solar system. Nature. 435, 462–465.ADSGoogle Scholar
  99. Mosqueira, I., Estrada, P. R., 2003a. Formation of the regular satellites of giant planets in an extended gaseous nebula I: Subnebula model and accretion of satellites. Icarus. 163, 198–231.ADSGoogle Scholar
  100. Mosqueira, I., Estrada, P. R., 2003b. Formation of the regular satellites of giant planets in an extended gaseous nebula II: Satellite migration and survival. Icarus. 163, 232–255.ADSGoogle Scholar
  101. Mosqueira, I., Estrada, P. R., 2005. On the origin of the Saturnian satellite system: Did Iapetus form in-situ? Lunar and Planetary Science XXXVI, Lunar and Planetary Institute, Houston. Abstract No. 1951.Google Scholar
  102. Mousis, O., Gautier, D., 2004. Constraints on the presence of volatiles in Ganymede and Callisto from an evolutionary turbulent model of the Jovian subnebula. Planetary and Space Science. 52, 361– 370.10.1016/j.pss.2003.06.004.ADSGoogle Scholar
  103. Nesvorny, D., et al., 2007. Capture of irregular satellites during planetary encounters. Astronomical Journal. 133, 1962–1976.ADSGoogle Scholar
  104. Nicholson, P. D., et al., 2008. Irregular satellites of the giant planets. In: M. A. Barucci, et al., (Eds.), The Solar System Beyond Neptune. University of Arizona Press with Lunar and Planetary Institute, Tucson, pp. 411–424.Google Scholar
  105. Nimmo, F., Matsuyama, I., 2007. Reorientation of icy satellites by impact basins. Geophysical Research Letters. 34.L19203, 10.1029/2007gl030798.ADSGoogle Scholar
  106. Nimmo, F., et al., 2007. Shear heating as the origin of the plumes and heat flux on Enceladus. Nature. 447, 289–291.ADSGoogle Scholar
  107. Papaloizou, J. C. B., et al., 2007. Disk-planet ineteractions during planet formation. In: B. Reipurth, et al., (Eds.), Protostars and Planets V. University of Arizona Press, Tucson, pp. 655–668.Google Scholar
  108. Pollack, J. B., et al., 1976. Formation of Saturn's satellites and rings, as influenced by Saturn's contraction history. Icarus. 29, 35–48.ADSGoogle Scholar
  109. Porco, C. C., et al., 2005a. Cassini imaging science: Initial results on Phoebe and Iapetus. Science. 307, 1237–1242.ADSGoogle Scholar
  110. Porco, C. C., et al., 2005b. Cassini imaging science: Initial results on Saturn's rings and small satellites. Science. 307, 1226– 1236.ADSGoogle Scholar
  111. Porco, C. C., et al., 2006. Cassini observes the active south pole of Ence-ladus. Science. 311, 1393–1401.ADSGoogle Scholar
  112. Porco, C. C., et al., 2007. Saturn's small inner satellites: Clues to their origins. Science. 318, 1602–1607.10.1126/science.1143977.ADSGoogle Scholar
  113. Prinn, R. G., Fegley, B., 1981. Kinetic inhibition of Co and N-2 reduction in circumplanetary nebulae — implications for satellite composition. Astrophysical Journal. 249, 308–317.ADSGoogle Scholar
  114. Prinn, R. G., Fegley, B., 1989. Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles. In: S. Atreya, (Ed.), Origin and Evolution of Planetary and Satellite Atmospheres. University of Arizona Press, Tucson, Arizona, pp. 78–136.Google Scholar
  115. Rabinowitz, D. L., et al., 2006. Photometric observations constraining the size, shape, and albedo of 2003 EL61, a rapidly rotating, pluto-sized object in the Kuiper Belt. Astrophysical Journal. 639, 1238–1251.ADSGoogle Scholar
  116. Reipurth, B., et al. (Eds.), 2007. Protostars and Planets V. University of Arizona Press, Tucson.Google Scholar
  117. Reynolds, R. T., Cassen, P. M., 1979. Internal structure of the major satellites of the outer planets. Geophysical Research Letters. 6, 121–124.ADSGoogle Scholar
  118. Safronov, V. S., 1967. Protoplanetary cloud and its evolution. Soviet Astronomy AJ USSR. 10, 650–658.ADSGoogle Scholar
  119. Safronov, V. S., 1969. Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Translated in 1972 as NASA TTF-667). Nauka, Moscow.Google Scholar
  120. Safronov, V. S., 1991. Kuiper prize lecture — some problems in the formation of the planets. Icarus. 94, 260–271.ADSGoogle Scholar
  121. Safronov, V. S., Ruskol, E. L., 1994. Formation and evolution of planets. Astrophysics and Space Science. 212, 13–22.ADSGoogle Scholar
  122. Schubert, G., et al., 1986. Thermal histories, compositions, and internal structures of the moons of the solar system. In: J. A. Burns, M. S. Matthews, (Eds.), Satellites. University of Arizona Press, Tucson, pp. 224–292.Google Scholar
  123. Schubert, G., et al., 2004. Interior composition, structure and dynamics of the Galilean satellites. In: F. Bagenal, et al., (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, pp. 281–306.Google Scholar
  124. Schubert, G., et al., 2007. Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus. 188, 345–355.ADSGoogle Scholar
  125. Shu, F. H., et al., 1993. Photoevaporation of the solar nebula and the formation of the giant planets. Icarus. 106, 92–101.ADSGoogle Scholar
  126. Spencer, J. R., et al., 2006. Cassini encounters Enceladus: Background and the discovery of a south polar hot spot. Science. 311, 1401– 1405.ADSGoogle Scholar
  127. Spergel, D. N., et al., 2007. Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Implications for cosmology. Astrophysical Journal Supplement Series. 170, 377–408.ADSGoogle Scholar
  128. Squyres, S. W., et al., 1983. The evolution of Enceladus. Icarus. 53, 319–331.ADSGoogle Scholar
  129. Stansberry, J. A., et al., 2006. The albedo, size, and density of binary Kuiper Belt object (47171) 1999 TC36. Astrophysical Journal. 643, 556–566.ADSGoogle Scholar
  130. Stern, S. A., Weissman, P. R., 2001. Rapid collisional evolution of comets during the formation of the Oort cloud. Nature. 409, 589–591.ADSGoogle Scholar
  131. Stevenson, D. J., Lunine, J. I., 1988. Rapid formation of Jupiter by diffusive redistribution of water-vapor in the solar nebula. Icarus. 75, 146–155.ADSGoogle Scholar
  132. Stevenson, D. J., et al., 1986. Origins of satellites. In: J. A. Burns, M. S. Matthews, (Eds.), Satellites. University of Arizona Press, Tucson.Google Scholar
  133. Thomas, P. C., et al., 2007. Shapes of the Saturnian icy satellites and their significance. Icarus. 190, 573–584.ADSGoogle Scholar
  134. Tobie, G., et al., 2006. Episodic outgassing as the origin of atmospheric methane on Titan. Nature. 440, 61–64.ADSGoogle Scholar
  135. Tsiganis, K., et al., 2005. Origin of the orbital architecture of the giant planets of the solar system. Nature. 435, 459–461.ADSGoogle Scholar
  136. Turrini, D., et al., 2008. A new perspective on the irregular satellites of Saturn – I. Dynamical and collisional history. Monthly Notices of the Royal Astronomical Society. 391, 1029–1051.10.1111/j.1365– 2966.2008.13909.x.ADSGoogle Scholar
  137. Turrini, D., et al., 2009. A new perspective on the irregular satellites of Saturn — II. Dynamical and physical origin. Monthly Notices of the Royal Astronomical Society. 392, 455–474.10.1111/j.1365– 2966.2008.14100.x.ADSGoogle Scholar
  138. Waite, J. H., Jr., et al., 2006. Cassini Ion and Neutral Mass Spectrometer: Enceladus plume composition and structure. Science. 311, 1419–1422.ADSGoogle Scholar
  139. Waite Jr, J. H., et al., 2009. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature. 460, 487– 490.doi:10.1038/nature08153.ADSGoogle Scholar
  140. Ward, W. R., 1986. Density waves in the solar nebula — Differential lindblad torque. Icarus. 67, 164–180.ADSGoogle Scholar
  141. Ward, W. R., 1997. Protoplanet migration by nebula tides. Icarus. 126, 261–281.ADSGoogle Scholar
  142. Warren, P. H., 2007. The moon. In: A. M. Davis, (Ed.), Treatise on Geochemistry: Vol. Meteorites, Comets, and Planets. Elsevier, Perg-amon, 10.1016/B0–08–043751–6/01149-X.Google Scholar
  143. Westphal, A. J., et al., 2008. Stardust interstellar preliminary examination — First results. Meteoritics & Planetary Science. 43, A169– A169.Google Scholar
  144. Wetherill, G. W., 1980. Formation of the terrestrial planets. Annual Review of Astronomy and Astrophysics. 18, 77–113.ADSGoogle Scholar
  145. Wetherill, G. W., Stewart, G. R., 1993. Formation of planetary embryos — effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus. 106, 190–209.ADSGoogle Scholar
  146. Wong, M. H., et al., 2008. Oxygen and other volatiles in the giant planets and their satellites. In: G. J. MacPherson, (Ed.), Oxygen in the Solar System. Mineralogical Society of America, Chantilly, VA, pp. 241–246.Google Scholar
  147. Yoder, C. F., 1995. Astrometric and geodetic properties of earth and the solar system. In: T. J. Ahrens, (Ed.), AGU Reference Shelf1: Global Earth Physics, A Handbook of Physical Constants. American Geophysical Union, Washington D.C., pp. 1–31.Google Scholar
  148. Zahnle, K., et al., 2003. Cratering rates in the outer solar system. Icarus. 163, 263–289.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena
  2. 2.Carl Sagan CenterSETI InstituteMountain View

Personalised recommendations