Icy Satellites: Geological Evolution and Surface Processes

  • Ralf Jaumann
  • Roger N. Clark
  • Francis Nimmo
  • Amanda R. Hendrix
  • Bonnie J. Buratti
  • Tilmann Denk
  • Jeffrey M. Moore
  • Paul M. Schenk
  • Steve J. Ostro
  • Ralf Srama

Abstract

The sizes of the Saturnian icy satellites range from ~ 1;500 km in diameter (Rhea) to ~20km (Calypso), and even smaller ‘rocks’ of only a kilometer in diameter are common in the system. All these bodies exhibit remarkable, unique features and unexpected diversity. In this chapter, we will mostly focus on the ‘medium-sized icy objects’ Mimas, Tethys, Dione, Rhea, Iapetus, Phoebe and Hyperion, and consider small objects only where appropriate, whereas Titan and Enceladus will be described in separate chapters. Mimas and Tethys show impact craters caused by bodies that were almost large enough to break them apart. Iapetus is unique in the Saturnian system because of its extreme global brightness dichotomy. Tectonic activity varies widely — from inactive Mimas through extensional terrains on Rhea and Dione to the current cryovolcanic eruptions on Enceladus — and is not necessarily correlated with predicted tidal stresses. Likely sources of stress include impacts, despinning, reorientation and volume changes. Accretion of dark material originating from outside the Saturnian system may explain the surface contamination that prevails in the whole satellite system, while coating by Saturn's E-ring particles brightens the inner satellites.

So far, among the surprising Cassini discoveries are the volcanic activity on Enceladus, the sponge-like appearance of Hyperion and the equatorial ridge on Iapetus — unique features in the solar system. The bright-ray system on Rhea was caused by a relatively recent medium impact which formed a ~40km crater at 12°S latitude, 112°W longitude, while the wispy streaks on Dione and Rhea are of tectonic origin. Compositional mapping shows that the dark material on Iapetus is composed of organics, CO2 mixed with H2O ice, and metallic iron, and also exhibits possible signatures of ammonia, bound water, H2 or OH-bearing minerals, and a number of as-yet unidentified substances. The spatial pattern, Rayleigh scattering effect, and spectral properties argue that the dark material on Iapetus is only a thin coating on its surface. Radar data indicate that the thickness of the dark layers can be no more than a few decimeters; this is also consistent with the discovery of small bright-ray and bright-floor craters within the dark terrain. Moreover, several spectral features of the dark material match those seen on Phoebe, Iapetus, Hyperion, Dione and Epimetheus as well as in the F-ring and the Cassini Division, implying that throughout the Saturnian system. All dark material appears to have a high content of metallic iron and a small content of nano-phase hematite. However, the complete composition of the dark material is still unresolved, and additional laboratory work is required. As previously concluded for Phoebe, the dark material appears to have originated external to the Saturnian system.

The icy satellites of Saturn offer an unrivalled natural laboratory for understanding the geological diversity of different-sized icy satellites and their interactions within a complex planetary system.

Keywords

Dark Material Tidal Stress Saturnian System Saturnian Satellite Solar Phase Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge the long years of work by the entire Cassini team that allowed these data of the Saturnian satellites to be obtained. We also acknowledge NASA, ESA, ASI, DLR, CNES and JPL that provide support for the international Cassini team. We thank K. Stephan, R. Wagner and M. Langhans for data processing. The discussions of reviewers C. Chapman and D. Domingue are highly appreciated. Part of this work was performed at the DLR Institute of Planetary Research, with support provided by the Helmholtz Alliance ‘Planetary Evolution and Life’ and the Jet Propulsion Laboratory under contract to the National Aeronautics and Space Administration.

We dedicate this work to Steve Ostro, who provided outstanding scientific contributions to the exploration of the Saturnian System.

References

  1. Allison, M.L. and Clifford, S.M., 1987, Ice-covered water volcanism on Ganymede, J. Geophys. Res. 92, 7865–7876.ADSGoogle Scholar
  2. Beeman, M., Durham, W.B., Kirby, S.B., 1988, Friction of ice, J. Geophys. Res. 93, 7625–7633.ADSGoogle Scholar
  3. Bell, J.F., Cruikshank, D.P., and Gaffey, M.J., 1985, The composition and origin of the Iapetus dark material, Icarus 61, 192–207.ADSGoogle Scholar
  4. Bills, B.G. and Ray, R.D., 2000, Energy dissipation by tides and libra-tions in synchronous satellites, 31st Lunar and Planetary Lunar and Planetary Science Conference, Houston, abstract #1709.Google Scholar
  5. Black, G.J., 1997, Chaotic rotation of Hyperion and modeling the radar properties of the icy Galilean satellites as a coherent backscatter effect. PhD thesis, Cornell University.Google Scholar
  6. Black, G.J., Campbell, D.B., and Ostro, S.J., 2001a, Icy Galilean satellites: 70cm radar results from Arecibo, Icarus 151, 160–166.ADSGoogle Scholar
  7. Black, G.J., Campbell, D.B., and Nicholson, P.D., 2001b, Icy Galilean satellites: Modeling radar reflectivities as a coherent backscatter effect, Icarus 151, 167–180.ADSGoogle Scholar
  8. Black, G.J., Campbell, D.B., Carter, L.M., and Ostro, S.J., 2004, Radar detection of Iapetus, Science 304, 553.ADSGoogle Scholar
  9. Black, G.J., Campbell, D.B., and Carter, 2007, Arecibo radar observations of Rhea, Dione, Tethys, and Enceladus, Icarus 191, 702–711.ADSGoogle Scholar
  10. Brown, R.H., Baines, K.H., Bellucci, G., Bibring, J.-P., Buratti, B.J., Bussoletti, E., Capaccioni, F., Cerroni, P., Clark, R.N., Coradini, A., Cruikshank, D.P, Drossart, P., Formisano, V., Jaumann, R., Langevin, Y., Matson, D.L., McCord, T.B., Miller, E., Nelson, R.M., Nicholson, P.D., Sicardy, B., and Sotin, C, 2004, The Cassini visual and infrared mapping spectrometer investigation, Space Sci. Rev. 115, 111–168.ADSGoogle Scholar
  11. Brown, R.H., Clark, R.N., Buratti, B.J., Cruikshank, D.P, Barnes, J.W., Mastrapa, R.M.E., Bauer, J., Newman, S., Momary, T., Baines, K.H., Bellucci, G., Capaccioni, F., Cerroni, P., Combes, M., Coradini, A., Drossart, P., Formisano, V., Jaumann, R., Langevin, Y., Matson, D.L., McCord, T.B., Nelson, R.M., Nicholson, P.D., Sicardy, B., and Sotin, C, 2006, Composition and physical properties of Enceladus surface, Science, 311, 1425–1428.ADSGoogle Scholar
  12. Brown, R.H., Lebreton, J.-P, Waite, H., (eds.), 2009, Titan from Cassini-Huygens, Springer NY, 2009.Google Scholar
  13. Bruesch, L.S. and Asphaug, E., 2004, Modeling global impact effects on middle-sized icy bodies: Applications to Saturn's moons, Icarus 168, 457–466.ADSGoogle Scholar
  14. Buratti, B.J., 1984, Voyager disk resolved photometry of the Saturnian satellites, Icarus 59, 426–435.ADSGoogle Scholar
  15. Buratti, B.J. and Veverka, J., 1984, Voyager photometry of Rhea, Dione, Tethys, Enceladus, and Mimas, Icarus 58, 254–264.Google Scholar
  16. Buratti, B.J., 1985, Application of a radiative transfer model to bright icy satellites, Icarus 61, 208–217.ADSGoogle Scholar
  17. Buratti, B.J. and Veverka, J. 1985, Photometry of rough planetary surfaces: The role of multiple scattering, Icarus 64, 320–328.ADSGoogle Scholar
  18. Buratti, B.J. 1988, Enceladus: Implications of its unusual photometric properties, Icarus 75, 113–126.ADSGoogle Scholar
  19. Buratti, B.J., Mosher, J., and Johnson, TV 1990, Albedo and color maps of the Saturnian satellites, Icarus 87, 339–357.ADSGoogle Scholar
  20. Buratti, B.J. and Mosher, J., 1995, The dark side of Iapetus: New evidence for an exogenous origin, Icarus 115, 219–227.ADSGoogle Scholar
  21. Buratti, B.J., Mosher, J.A., Nicholson, P.D., McGhee, C, and French, R., 1998, Photometry of the Saturnian satellites during Ring Plane Crossing, Icarus 136, 223–231.ADSGoogle Scholar
  22. Buratti, B.J., Hicks, M.D., Tryka, K.A., Sittig, M.S. and Newburn, R.L., 2002, High-resolution 0.33–0.92 μm spectra of Iapetus, Hyperion, Phoebe, Rhea, Dione, and D-type asteroids: How are they related? Icarus 155, 375–381.ADSGoogle Scholar
  23. Buratti, B., Hicks, M., and Davies, A., 2005a, Spectrophotometry of the small satellites of Saturn and their relationship to Iapetus, Phoebe, and Hyperion, Icarus 175, 490–495.Google Scholar
  24. Buratti, B.J., Cruikshank, D.P, Brown, R.H., Clark, R.N., Bauer, J.M., Jaumann, R., McCord, T.B., Simonelli, D.P, Hibbitts, C.A., Hansen, G.A., Owen, T.C., Baines, K.H., Bellucci, G., Bibring, J.-P, Capaccioni, F., Cerroni, P., Coradini, A., Drossart, P., Formisano, V, Langevin, Y, Matson, D.L., Mennella, V., Nelson, R.M., Nicholson, P.D., Sicardy, B., Sotin, C, Roush, T.L., Soderlund, K., and Muradyan, A., 2005b, Cassini visual and infrared mapping spectrometer observations of Iapetus: Detection of CO2, Astrophys. J. 622, L149–L152.ADSGoogle Scholar
  25. Buratti, B.J., Soderlund, K., Bauer, J., Mosher, J.A., Hicks, M.D., Simonelli, D.P, Jaumann, R., Clark, R.N., Brown, R.H., Cruikshank, D.P, and Momary, T, 2008, Infrared (0.83–5.1 μm) Photometry of Phoebe from the Cassini visual infrared mapping spectrometer, Icarus 193, 309–322.ADSGoogle Scholar
  26. Buratti, B.J., Bauer, J., Hicks, M.D., Mosher, J.A., Filacchione, G., Momary, T.R., Baines, K. Brown, R.H., Clark, R.N., and Nicholson, P.D. 2009a, Cassini spectra and photometry 0.25–5.1 μm of the small inner satellites of Saturn, Icarus, in revision.Google Scholar
  27. Buratti, B.J., Hillier, J., Mosher, J., DeWet, S., Abramson, L., Akhter, N., Clark, R.N., Brown, R.H., Baines, K., and Nicholson, P., 2009b, Opposition surges on the icy satellites of Saturn as seen by Cassini, Icarus, submitted.Google Scholar
  28. Burch, J.L, Goldstein, J., Lewis, W.S., Young, D.T., Coates, A.J., Dougherty, M.K., and André, N., 2007, Tethys and Dione as sources of outward-flowing plasma in Saturn's magnetosphere, Nature 447, 833–835. doi:10.1038/nature05906.ADSGoogle Scholar
  29. Burns, J.A., Lamy, PL., and Soter, S., 1979, Radiation forces on small particles in the solar system, Icarus 40, 1–48.ADSGoogle Scholar
  30. Carlson, R., Smythe, W., Baines, K., Barbinas, E., Burns, R., Calcutt, S., Calvin, W., Clark, R., Danielson, G., Davies, A., Drossart, P., Encrenaz, T, Fanale, F., Granahan, J., Hansen, G., Hererra, P., Hibbitts, C, Hui, J., Irwin, P., Johnson, T, Kamp, L., Kieffer, H., Leader, F., Lopes-Gautier, R., Matson, D., McCord, T, Mehlman, D., Ocampo, A., Orton, G., Roos-Serote, M., Segura, M., Shirley, J., Soderblom, L., Stevenson, A., Taylor, F., Weir, A., and Weissman, P., 1996, Near-infrared spectroscopy and spectral mapping of Jupiter and the Galilean satellites: First results from Galileo's initial orbit, Science, 274, 385–388.ADSGoogle Scholar
  31. Carlson, R.W., Anderson, M.S., Johnson, R.E., Smythe, W.D., Hendrix, A.R., Barth, C.A., Soderblom, L.A., Hansen, G.B., McCord, T.B., Dalton, J.B., Clark, R.N., Shirley, H.J., Ocampo, A.C., and Matson, D.L., 1999, Hydrogen peroxide on the surface of Europa, Science, 283, 2062–2064.ADSGoogle Scholar
  32. Cassen, P., Reynolds, R.T., and Peale, S.J., 1979, Is there liquid water on Europa? Geophys. Res. Lett. 6, 731–734.ADSGoogle Scholar
  33. Cassini, G.D., 1672, Phil. Trans. 12, 831. Quoted in Alexander, A.F. O'D., 1962, The Planet Saturn, McMillan, New York, 474 p.Google Scholar
  34. Castillo-Rogez, J.C., Matson, D.L., Sotin, C, Johnson, TV, Lunine, J.I., and Thomas, PC, 2007, Iapetus' geophysics: Rotation rate, shape and equatorial ridge, Icarus 190, 179–202.ADSGoogle Scholar
  35. Chapman C.R. and McKinnon, W.B., 1986, Cratering of planetary satellites. In: Satellites (Burns, J.A., Matthews, M.S. (eds.)), Univ. Ariz. Press, Tucson, pp. 492–580.Google Scholar
  36. Chapman, C.R., 2004, Space weathering of asteroid surfaces. Annual. Rev. Earth Planet Sci. 32, 539–567.ADSGoogle Scholar
  37. Chen, E.M.A. and Nimmo, F., 2008, Implications from Ithaca Chasma on the thermal and orbital history of Tethys, Geophys. Res. Lett. 35, L19203.ADSGoogle Scholar
  38. Clark, R.N., Brown, R.H., Owensby, P.D., and Steele, A., 1984, Saturn's satellites: near-infrared spectrophotometry (0:65–2:5μm) of the leading and trailing sides and compositional implications, Icarus 58, 265–281.ADSGoogle Scholar
  39. Clark, R.N., Fanale, F.P, and Gaffey, M.J., 1986, Surface composition of natural satellites. In: Satellites (Burns, J.A., Matthews, M.S. (eds.)), Univ. Ariz. Press, Tucson, pp. 437–491.Google Scholar
  40. Clark, R.N., Brown, R.H., Jaumann, R., Cruikshank, D.P, Nelson, R.M., Buratti, B.J., McCord, T.B., Lunine, J., Baines, K.H., Bellucci, G., Bibring, J.-P, Capaccioni, F., Cerroni, P., Coradini, A., Formisano, F., Langevin, Y, Matson, D.L., Mennella, V, Nicholson, P.D., Sicardy, B., Sotin, C, Hoefen, T.M., Curchin, J.M., Hansen, G., Hibbits, K., and Matz, K.-D., 2005, Compositional maps of Saturn's moon Phoebe from imaging spectroscopy, Nature 435, 66–69, doi:10.1038/nature03558.ADSGoogle Scholar
  41. Clark, R.N., Curchin, J.M., Jaumann, R., Cruikshank, D.P, Brown, R.H., Hoefen, T.M., Stephan, K., Moore, J.M., Buratti, B.J., Baines, K.H., Nicholson, P.D., and Nelson, R.M., 2008a, Compositional Mapping of Saturn's Satellite Dione with Cassini VIMS and Implications of Dark Material in the Saturn System, Icarus 193, 372–386.ADSGoogle Scholar
  42. Clark, R.N., Cruikshank, D.P., Jaumann, R., Filacchione, G., Nicholson, P.D., Brown, R.H., Stephan, K., Hedman, M., Buratti, B.J., Curchin, J.M., T.M., Hoefen, Baines, K.H., and Nelson, R., 2008b, Compositional Mapping of Saturn's Rings and Icy Satellites with Cassini VIMS, Saturn After Cassini-Huygens, London, July, 2008.Google Scholar
  43. Clark R.N., Cruikshank, D.P., Jaumann, R., Brown, R.H., Cruchin, J.M., Hoefen, T.M., Stephan, K., Dalle Ore, C., Buratti, J.B., Filacchione, G., Baines, K.H., and Nicholson, P.D., 2009, The Composition of Iapetus: Mapping Results from Cassini VIMS, Icarus, in review.Google Scholar
  44. Collins, G.C., McKinnon, W.B., Moore, J.M., Nimmo, F., Pappalardo, R.T., Prockter, L.M., and Schenk, P.M., 2009, Tectonics of the outer planet satellites, in Planetary Tectonics, (R.A. Schultz and T.R. Wat-ters (eds.)), Cambridge Univ. Press, in press.Google Scholar
  45. Cook, A.F. and Franklin, F., 1970, An explanation for the light curve of Iapetus, Icarus 13, 282–291.ADSGoogle Scholar
  46. Crawford, G.D. and Stevenson, D.J., 1988, Gas-driven water volcanism and the resurfacing of Europa, Icarus 73, 66–79.ADSGoogle Scholar
  47. Cruikshank, D.P. and Brown, R.H., 1982, Surface composition and radius of Hyperion, Icarus 50, 82–87.ADSGoogle Scholar
  48. Cruikshank, D.P., Bell, J.F., Gaffey, M.J., Brown, R.H., Howell, R., Beerman, C., and Rognstad, M., 1983, The Dark Side of Iapetus, Icarus 53, 90–104.ADSGoogle Scholar
  49. Cruikshank, D.P., Veverka, J., Lebofsky, L.A., 1984, Satellites of Saturn: The optical properties, In Saturn, T. Gehrels and M.S. Matthews (eds.), Univ. Ariz. Press, 640–667.Google Scholar
  50. Cruikshank, D.P., Brown, R.H., Calvin, W., Roush, T.L., and Bartholomew, M.J., 1998a, Ices on the satellites of Jupiter, Saturn, and Uranus. In: Solar System Ices (Schmitt, B., de Bergh, C., Festou, M. (eds.)), Kluwer Academic, Dordrecht, pp. 579–606.Google Scholar
  51. Cruikshank, D.P., Owen, T.C., Ore, C.D., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., Poulet, F., Benedix, G.K., and Emery, J.P., 2005, A spectroscopic study of the surfaces of Saturn's large satellites: H2O ice, tholins, and minor constituents, Icarus 175, 268–283.ADSGoogle Scholar
  52. Cruikshank, D.P., Dalton, J.B., Dalle Ore, C.M., Bauer, J., Stephan, K., Filacchione, G., Hendrix, C.J., Hansen, C.J., Coradini, A., Cerroni, P., Tosi, F., Capaccioni, F., Jaumann, R., Buratti, B.J., Clark, R.N., Brown, R.H., Nelson, R.M., McCord, T.B., Baines, K.H., Nicholson, P.D., Sotin, C., Meyer, A.W., Bellucci, G., Combes, M., Bibring, J.-P., Langevin, Y., Sicardy, B., Matson, D.L., Formisano, V., Drossart, P., and Mennella, V., 2007, Surface composition of Hyperion, Nature 448, 54–57, doi:101038/nature05948.ADSGoogle Scholar
  53. Cruikshank, D.P., Wegryn, E., Dalle Ore, C.M., Brown, R.H., Baines, K.H., Bibring, J.-P., Buratti, B.J., Clark, R.N., McCord, T.B., Nicholson, P.D., Pendleton, Y.J., Owen, T.C., Filacchione, G., and the VIMS Team, 2008, Hydrocarbons on Saturn's Satellites Iapetus and Phoebe, Icarus 193, 334–343, doi:10.1016/j.icarus.2007.04.036.ADSGoogle Scholar
  54. Cuzzi, J.N., Dones, L., Clark, R.N., French, R.G., Johnson, T.V., Marouf, E.A., Spilker, L.J., 2009, Ring composition. In: Saturn after Cassini-Huygens, Saturn from Cassini-Huygens (M. Dougherty, L. Esposito and S. Krimigis, (eds.)), Springer NY, 2009.Google Scholar
  55. Czechowski, L. and Leliwa-Kopystyński, J., 2008, The Iapetus's ridge: Possible explanations of its origin, Adv. Space Res. 42, 61–69.ADSGoogle Scholar
  56. Denk, T., Matz, K.-D., Roatsch, T., Wolf, U., Wagner, R.J., Neukum, G., and Jaumann, R., 2000, Iapetus (1): size, topography, surface structures, craters. 31th Lunar and Planetary Science Conference, Houston, abstract #1596.Google Scholar
  57. Denk, T. and Neukum, G., 2000, Iapetus (2): Dark-side origin. 31th Lunar and Planetary Science Conference, Houston, abstract #1660.Google Scholar
  58. Denk, T., Neukum, G., Roatsch, T., Giese, B., Wagner, R.J., Helfen-stein, P., Burns, J.A., Turtle, E.P., Johnson, T.V., Porco, C.C., Cassini Imaging Team, 2006, Iapetus: Two Years of Observations by the Cassini ISS Camera, 1st European Planetary Science Congress, EPSC2006-A-00571.Google Scholar
  59. Denk, T., Neukum, G., Schmedemann, N., Roatsch, T., Wagner, R.J., Giese, B., Perry, J.E., Helfenstein, P., Turtle, E.P., and Porco, C.C., 2008, Iapetus imaging during the targeted flyby of the Cassini spacecraft, 39th Lunar and Planetary Science Conference, Houston, abstract #2533.Google Scholar
  60. Denk, T., Neukum, G., Roatsch, Th., Porco, C.C., Burns, J.A., Galuba, G.G., Schmedemann, N., Helfenstein, P., Thomas, P.C., Wagner, R.J., West, R.A., 2009, Iapetus: Unique Surface Properties and a Global Color Dichotomy from Cassini Imaging. Science under revision.Google Scholar
  61. Domingue, D.L., Lockwood, G.W., and Thompson, D.T., 1995, Surface textural properties of icy satellites: A comparison between Europa and Rhea, Icarus 115, 228–249.ADSGoogle Scholar
  62. Dones, L., Chapman, C., Melosh, H.J., McKinnon, W.B., Neukum, G., and Zahnle, K., 2009, Impact cratering and age determination. In Saturn after Cassini Huygens, Saturn from Cassini-Huygens (M. Dougherty, L. Esposito and S. Krimigis, (eds.)), Springer NY, 2009.Google Scholar
  63. Dougherty, M.K., Khurana, K.K., Neubauer, F.M., Russell, C.T., Saur, J., Leisner, J.S., and Burton, M.E., 2006, Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer, Science 311, 1406–1409.ADSGoogle Scholar
  64. Dougherty, M.K., Esposito, L.W., Krimigis, S.M., 2009, Overview, Saturn from Cassini-Huygens, (M. Dougherty, L. Esposito and S. Krimigis, (eds.)), Springer NY, 2009.Google Scholar
  65. Durham, W.B. and Stern, L.A., 2001, Rheological properties of water ice — applications to satellites of the outer planets, Ann. Rev. Earth Planet. Sci. 29, 295–330.ADSGoogle Scholar
  66. Elachi, C., Allison, M., Borgarelli, L., Encrenaz, P., Im, E., Janssen, M.A., Johnson, W.T.K., Kirk, R.L., Lorenz, R.D., Lunine, J.I., Muhleman, D.O., Ostro, S.J., Picardi, G., Posa, F., Roth, L.E., Seu, R., Soderblom, L.A., Vetrella, S., Wall, S.D., Wood, C.A., and Zebker, H.A., 2004, RADAR: The Cassini Titan radar mapper, Space Sci. Rev. 115, 71–110.ADSGoogle Scholar
  67. Ellsworth, K. and Schubert, G., 1983, Saturn's icy satellites — thermal and structural models, Icarus 54, 490–510, 1983.ADSGoogle Scholar
  68. Eluszkiewicz, J.,1990, Compaction and internal structure of Mimas, Icarus 84, 215–225.ADSGoogle Scholar
  69. Esposito, L.W., Barth, C.A., Colwell, J.E., Lawrence, G.M., McClintock, W.E., Stewart, A.I.F., Keller, H.U., Korth, A., Lauche, H., Festou, M.C., Lane, A.L., Hansen, C.J., Maki, J.N., West, R.A., Jahn, H., Reulke, R., Warlich, K., Shemansky, D.E., Yung, Y.L., 2004, The Cassini ultraviolet imaging spectrograph investigation, Space Sci. Rev. 115, 299–361, doi:10.1007/s11214–004–1455–8.ADSGoogle Scholar
  70. Fagents, S.A., Greeley, R., Sullivan, R.J., Pappalardo, R.T., Prockter, L.M., The Galileo SSI Team, 2000, Cryomagmatic mechanisms for the formation of Rhadamanthys Linea, triple band margins, and other low-albedo features on Europa, Icarus 144, 54–88, doi:10.1006/icar.1999.6254.ADSGoogle Scholar
  71. Fagents, S.A., 2003, Considerations for effusive cryovolcanism on Eu-ropa: the post-Galileo perspective, J. Geophys. Res. 108, 5139.Google Scholar
  72. Filacchione, G., Capaccioni, F., McCord, T.B., Coradini, A., Cerroni, P., Bellucci, G., Tosi, F., D'Aversa, E., Formisano, V., Brown, R.H., Baines, K.H., Bibring, J.-P., Buratti, B.J., Clark, R.N., Combes, M., Cruikshank, D.P., Drossart, P., Jaumann, R., Langevin, Y., Matson, D.L., Mennella, V., Nelson, R.M., Nicholson, P.D., Sicardy, B., Sotin, C, Hansen, G., Hibbitts, K., Showalter, M., and Newmann, S., 2007, Saturn's icy satellites investigated by Cassini VIMS. I. Full-disk properties: 0:35–5:1 μm reflectance spectra and phase curves, Icarus 186, 259–290.ADSGoogle Scholar
  73. Filacchione, G., Capaccioni, F., Tosi, F., Cerroni, P., McCord, T.B., Baines, K.H., Bellucci, G., Brown, R.H., Buratti, B.J., Clark, R.N., Cruikshank, D.P., Cuzzi, J.N., Jaumann, R., Stephan, K., Matson, D.L., Nelson, R.M., and Nicholson, P.D., 2008, Analysis of the Sat-urnian icy satellites full-disk spectra by Cassini-VIMS, Saturn After Cassini-Huygens, London, July, 2008.Google Scholar
  74. Fink, U. and Larson, H.P, 1975, Temperature dependence of the water-ice spectrum between 1 and 4 microns: application to Europa, Ganymede, and Saturn's rings, Icarus 24, 411–420.Google Scholar
  75. Flasar, F.M., Kunde, V.G., Abbas, M.M., Achterberg, R.K., Ade, P., Barucci, A., Bézard, B., Bjoraker, G.L., Brasunas, J.C., Calcutt, S., Carlson, R., Césarsky, C.J., Conrath, B.J., Coradini, A., Courtin, R., Coustenis, A., Edberg, S., Edgington, S., Ferrari, C, Fouchet, T., Gautier, D., Gierasch, P.J., Grossman, K., Irwin, P., Jennings, D.E., Lellouch, E., Mamoutkine, A.A., Marten, A., Meyer, J.P, Nixon, C.A., Orton, G.S., Owen, T.C., Pearl, J.C., Prangé, R., Raulin, F., Read, PL., Romani, P.N. Samuelson, R.E., Segura, M.E., Showalter, M.R., Simon-Miller, A.A., Smith, M.D., Spencer, J.R., Spilker, L.J., and Taylor, F.W., Exploring the Saturn system in the thermal infrared: The composite infrared spectrometer, 2004, Space Sci. Rev. 115, 169–297, doi 10.1007/s11214-004-1454-9.ADSGoogle Scholar
  76. Forsberg-Taylor, N.K., Howard, A.D., and Craddock, R.A. 2004, Crater degradation in the Martian highlands: Morphometric analysis in the Sinus Sabaeus region and simulation modeling suggest fluvial processes, J. Geophys. Res. 109, doi: 10.1029/2004JE002242.Google Scholar
  77. Gehrels, T. and Matthews, M.S., 1984, Saturn, Univ. Ariz. Press, Tucson.Google Scholar
  78. Geissler, P.E., 2000, Cryovolcanism in the outer solar system. In Encyclopedia of Volcanoes (Sigurdsson, H. (ed.)), Academic, San Diego, pp. 785–800.Google Scholar
  79. Giese, B., Wagner, R., Neukum, G., Helfenstein, P., and Thomas, PC, 2007, Tethys: Lithospheric thickness and heat flux from flexurally supported topography at Ithaca Chasma, Geophys. Res. Lett. 34, L21203.ADSGoogle Scholar
  80. Giese, B., Denk, T, Neukum, G., Roatsch, T, Helfenstein, P., Thomas, PC, Turtle, E.P, McEwen, A., and Porco, C.C., 2008, The topography of Iapetus' leading side, Icarus 193, 359–371.ADSGoogle Scholar
  81. Goguen, J. 1981, A theoretical and experimental investigation of the photometric functions of particulate surfaces, PhD Thesis, Cornell Univ., Ithaca, NY.Google Scholar
  82. Greenberg, R. and Weidenschilling, S.J., 1984, How fast do Galilean satellites spin? Icarus 58, 186–196.ADSGoogle Scholar
  83. Greenberg, R. Geissler, P., Hoppa, G., Tufts, B.R., Durda, D.D., Pappalardo, R., Head, J.W., Greeley, R., Sullivan, R., Carr, M.H., 1998, Tectonic processes on Europa: Tidal stresses, mechanical response, and visible features, Icarus 135, 64–78, doi: 10.1006/ icar. 1998.5986.ADSGoogle Scholar
  84. Greenberg, R. and Geissler, P., 2002, Europa's dynamic icy crust, Me-teorit. Planet. Sci. 37, 1685–1710.ADSGoogle Scholar
  85. Hamilton, D.P. and Burns, J.A., 1994, Origin of Saturn's E-ring: Self sustained, naturally, Science 264, 550–553.ADSGoogle Scholar
  86. Hapke, B. 1981, Bidirectional reflectance spectroscopy, 1. Theory, J. Geophys. Res. 86, 4571–4586.ADSGoogle Scholar
  87. Hapke, B. 1984, Bidirectional reflectance spectroscopy, 3. Correction for macroscopic roughness, Icarus 59, 41–59.ADSGoogle Scholar
  88. Hapke, B. 1986, Bidirectional reflectance spectroscopy, 4. The extinction coefficient and the opposition effect, Icarus 67, 264–280.ADSGoogle Scholar
  89. Hapke, B. 1990, Coherent backscatter and the radar characteristics of outer planet satellites, Icarus 88, 407–417.ADSGoogle Scholar
  90. Hawkes, I. and Mellor, M.,1972, Deformation and fracture of ice under uniaxial stress, J. Glaciol. 11, 61, 103–131.Google Scholar
  91. Helfenstein P. and Parmentier, E.M., 1983, Patterns of fracture and tidal stresses on Europa, Icarus 53, 415–430.ADSGoogle Scholar
  92. Helfenstein, P. and Parmentier, E.M., 1985, Patterns of fracture and tidal stresses due to nonsynchronous rotation — implications for fracturing on Europa, Icarus 61, 175–184.ADSGoogle Scholar
  93. Helfenstein, P. and Shepard, M.K., 1998, Submillimeter-scale topography of the lunar Regolith, Icarus 124, 262–267.Google Scholar
  94. Hendrix, A.R. Barth, C.A., Hord, C.W., and Lane, A.L., 1998, Europa: Disk-resolved ultraviolet measurements using the Galileo ultraviolet spectrometer, Icarus 135, 79–94.ADSGoogle Scholar
  95. Hendrix, A.R., Barth, C.A., Hord, C.W., 1999, Ganymede's ozone-like absorber: Observations by the Galileo Ultraviolet Spectrometer, J. Geophys. Res. 104, 14169–14178.ADSGoogle Scholar
  96. Hendrix, A.R. and C.J. Hansen, 2008a, The albedo dichotomy of Iapetus measured at UV wavelengths, Icarus 193, 344–351.ADSGoogle Scholar
  97. Hendrix, A.R. and C.J. Hansen, 2008b, Ultraviolet observations of Phoebe from the Cassini UVIS, Icarus 193, 323–333.ADSGoogle Scholar
  98. Hendrix, A.R., and C.J. Hansen, 2009a, The UV albedo of Enceladus: Implications for surface composition, Icarus under revision.Google Scholar
  99. Hendrix, A.R. and Hansen, C.J., 2009b, Iapetus: New results from Cassini UVIS, 40th Lunar and Planetary Lunar and Planetary Science Conference, Houston, abstract #2200.Google Scholar
  100. Hendrix, A.R. and Buratti, B.J., 2009, Multi-wavelength photometry of icy Saturnian satellites: A fist look, 40th Lunar and Planetary Lunar and Planetary Science Conference, Houston, abstract 2438#.Google Scholar
  101. Hibbitts, C.A., McCord, T.B., and Hansen, G.B., 2000, Distributions of CO2 and SO2 on the surface of Callisto, J. Geophys. Res. 105, 22541–22557.ADSGoogle Scholar
  102. Hibbitts, C.A., Pappalardo, R.T., Hansen, G.B., and McCord, T.B., 2003, Carbondioxide on Ganymede, J. Geophys. Res. 108, doi:10.1029/2002JE001956.5036.Google Scholar
  103. Hillier, J. and Squyres, S.W., 1991, Thermal stress tectonics on the satellites of Saturn and Uranus, J. Geophys. Res. 96, 15665–15674.ADSGoogle Scholar
  104. Hoppa, G.V, Tufts, B.R., Greenberg, R., and Geissler, P.E., 1999a, Formation of cycloidal features on Europa, Science 285, 1899–1902.ADSGoogle Scholar
  105. Hoppa, G., Tufts, B.R., Greenberg, R., and Geissler, P., 1999b, Strike-slip faults on Europa: Global shear patterns driven by tidal stress, Icarus 141, 287–298.ADSGoogle Scholar
  106. Horak, H.G., 1950, Diffuse reflection by planetary atmospheres, Ap. J. 112, 445–463.ADSGoogle Scholar
  107. Horányi, M., Juhász, A., and Morfill, E.G., 2008, Large-scale structure of Saturn's E-ring, Geophys. Res. Lett., 35, L04203, doi: 10.1029/2007GL032726.Google Scholar
  108. Howard, A.D., 2007, Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing, Geomorphology, 9, 332–363.ADSGoogle Scholar
  109. Howard, A.D. and Moore, J.M., 2008, Sublimation-driven erosion on Callisto: A landform simulation model test, Geophys. Res. Let. 35, L03203, doi:101029/2007GL032618.Google Scholar
  110. Ip, W.-H., 2006, On a ring origin of the equatorial ridge of Iapetus. Geophys. Res. Lett. 33, doi:10.1029/2005GL025386. L16203.Google Scholar
  111. Irvine, W. 1966, The shadowing effect in diffuse radiation, J. Geophys. Res. 71, 2931–2937.ADSGoogle Scholar
  112. Jacobson, R.A. and French, R.G., 2004, Orbits and masses of Saturn's coorbital and F-ring shepherding satellites, Icarus 172, 382–387.ADSGoogle Scholar
  113. Jacobson, R.A. Antreasian, P.G., Bordi, J.J., Criddle, K.E., Ionasescu, R., Jones, J.B., Meek, M.C., Owen, W.M., Jr., Roth, D.C., Round-hill, I.M., and Stauch, J.R., Cassini Navigation, 2004, The orbits of the major Saturnian satellites and the gravity field of the Saturnian system, Bull. Am. Astronom. Soc. 36(3), 1097.ADSGoogle Scholar
  114. Jacobson, R.A., Antreasian, P.G., Bordi, J.J., Criddle, K.E., Ionasescu, R., Jones, J.B., Mackenzie, R.A., Pelletier, F.J., Owen Jr., W.M., Roth, D.C., and Stauch, J.R., 2005, The gravity field of the Saturnian system and the orbits of the major Saturnian satellites, BAAS 37, 729.ADSGoogle Scholar
  115. Jacobson, R.A., 2006, SAT252 — JPL satellite ephemeris.Google Scholar
  116. Jacobson, R.A., 2007, SAT270, SAT271 — JPL satellite ephemerides.Google Scholar
  117. Janes, D.M. and Melosh, H.J., 1988, Sinker tectonics — An approach to the surface of Miranda, J. Geophys. Res. 93, 3217–3143.ADSGoogle Scholar
  118. Jarvis, K.S., Vilas, F., Larson, S.M., and Gaffey, M.J., 2000, Are Hyperion and Phoebe linked to Iapetus? Icarus 146, 125–132.ADSGoogle Scholar
  119. Jaumann, R., Stephan, K., Brown, R.H., Buratti, B.J., Clark, R.N., McCord, T.B., Coradini, A., Capaccioni, P., Filacchione, G., Cerroni, P., Baines, K.H., Bellucci, G., Bibring, J.P., Combes, M., Cruikshank, D.P., Drossart, P., Formisano, V., Langevin, Y., Matson, D.L., Nelson, R.M., Nicholson, P.D., Sicardy, B., Sotin, C., Soderblom, L.A., Griffith, C., Matz, K.D., Roatsch T., Scholten, F., and Porco, C.C., 2006, High-resolution Cassini-VIMS mosaics of Titan and the icy Saturnian satellites, Planet Space Sci. 54, 1146–1155.ADSGoogle Scholar
  120. Jaumann, R., Stephan, K., Hansen, G.B., Clark, R.N., Buratti, B.J., Brown, R.H., Baines, K.H., Bellucci, G., Coradini, A., Cruikshank, D.P., Griffith, C.A., Hibbits, C.A., McCord, T.B., Nelson, R.M., Nicholson, P.D., Sotin, C., and Wagner, R., 2008, Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements, Icarus 193, 407–419, doi:10.1016/j.icarus.2007.09.013.ADSGoogle Scholar
  121. Jaumann, R., Kirk, R.L., Lorenz, R.D., Lopez, R.M.G., Stofan, E.R., Turtle, E.P., Keller, H.U., Wood, C.A., Sotin, C., Soderblom, L.A., and Tomasko, M., 2009, Geology and surface processes on Titan, Titan from Cassini-Huygens (Brown, R. Lebreton, J.-P., and Waite, H. (eds.)), Springer NY, 2009.Google Scholar
  122. Johnson, R.E., 1997, Polar “caps” on Ganymede and Io revisited, Icarus 128, 469–471.ADSGoogle Scholar
  123. Johnson, R.E. and Jesser, W.A., 1997, O2=O3 microatmospheres in the surface of Ganymede, Astrophys. J. 480, L79–L82.ADSGoogle Scholar
  124. Johnson, R.E. and Quickenden, T.I., 1997, Photolysis and radiolysis of water ice on outer solar system bodies, J. Geophys. Res. 102, 10985–10996.ADSGoogle Scholar
  125. Johnson, R.E., Killen, R.M., Waite, J.H., and Lewis, W.S., 1998, Eu-ropa's surface composition and sputter-produced ionosphere, Geo-phys. Res. Lett. 25, 3257–3260.ADSGoogle Scholar
  126. Johnson, R.E., Carlson, R.W., Cooper, J.F., Paranicas, C., Moore, M.H., and Wong, M.C., 2004, Radiation effects on the surfaces of the Galilean satellites. In: Jupiter — the Planet, Satellites and Magnetosphere (Bagenal, F., Dowling, T., and McKinnon, W. B. (eds.)), Cambridge University, Cambridge.Google Scholar
  127. Johnson, R.E., Fama, M., Liu, M., Baragiola, R.A., Sittler, E.C., and Smith, H.T., 2008, Sputtering of ice grains and icy satellites in Saturn's inner magnetosphere, Planet. Space Sci. 56, 1238–1243.ADSGoogle Scholar
  128. Johnson, T.V., 1998, Introduction to icy satellite geology. In Solar System Ices (Schmitt, B., De Bergh, C., and Festou, M. (eds.)), Kluwer, Dordrecht, pp. 511–524.Google Scholar
  129. Johnson, T.V., Estrada, E., and Lissauer, J., 2009, Origin of the Saturnian System, Saturn from Cassini-Huygens (Dougherty, M. Esposito, L. and Krimigis, S. (eds.)), Springer NY, 2009.Google Scholar
  130. Jones, G.H., Roussos, E., Krupp, N., Paranicas, C., Woch, J., Lagg, A., Mitchell, D.G., Krimigis, S.M., and Dougherty, M.K., 2006, Ence-ladus' varying imprint on the magnetosphere of Saturn, Science 311, 1412–1415.ADSGoogle Scholar
  131. Jones, G.H., Roussos, E., Krupp, N., Beckmann, U., Coates, A.J., Crary, F., Dandouras, I., Dikarev, V., Dougherty, M.K., Garnier, P., Hansen, C.J., Hendrix, A.R., Hospodarsky, G.B., Johnson, R.E., Kempf, S., Khurana, K.K., Krimigis, S.M., Krüger, H., Kurth, W.S., Lagg, A., McAndrews, H.J., Mitchell, D.G., Paranicas, C., Postberg, F., Russell, C.T., Saur, J., Seiß, M., Spahn, F., Srama, R., Strobel, D.F., Tokar, R., Wahlund, J.-E., Wilson, R.J., Woch, J., and Young, D., 2008, The dust halo of Saturn's largest icy moon, Rhea, Science 319, 1380–1384. doi:10.1126/science.1151524.ADSGoogle Scholar
  132. Kargel, J.S., 1991, Brine volcanism and the interior structures of asteroids and icy satellites, Icarus 95, 368–390.ADSGoogle Scholar
  133. Kargel, J.S., Croft, S.K., Lunine, J.I., and Lewis, J.S., 1991, Rheologi-cal properties of ammonia-water liquids and crystal-liquid slurries: Planetological implications, Icarus 89, 93–112.ADSGoogle Scholar
  134. Kargel, J.S., 1992, Ammonia-water volcanism in icy satellites: Phase relations at 1 atmosphere, Icarus 100, 556–574.ADSGoogle Scholar
  135. Kargel, J.S., 1995, Cryovolcanism on the icy satellites, Earth Moon Planets 67, 101–113.ADSGoogle Scholar
  136. Kargel, J.S. and Pozio, S., 1996, The volcanic and tectonic history of Enceladus, Icarus 119, 385–404.ADSGoogle Scholar
  137. Kempf, S., Srama, R., Postberg, F., Burton, M., Green, S.F., Helfert, S. Hillier, J.K., McBride, N., McDonnell, J.A.M., Moragas-Klostermeyer, G., Roy, M., and Gruün, E., 2005, Composition of Saturnian stream particles, Science, 307, 1274–1276.ADSGoogle Scholar
  138. Kempf, S., Srama, R., Beckmann, U., and Schmidt, J., Saturn's E ring as seen by the Cassini dust detector, 2008, AGU Fall Meeting, http://www.agu.org/meetings/fm08/fm08-sessions/fm08_P32A.html.
  139. Kirchoff, M. and Schenk, P., 2008, Cratering records of Saturnian satellites, 39th Lunar and Planetary Science Conference, Houston, abstract # 2234.Google Scholar
  140. Kirchoff, M. and Schenk, P., 2009, Cratering records of Saturnian satellites, Icarus under revision.Google Scholar
  141. Kirk, R.L. and Stevenson, D.J., 1987, Thermal evolution of a differentiated Ganymede and implications for surface features, Icarus 69, 91–134.ADSGoogle Scholar
  142. Klavetter, J.J., 1989 Rotation of Hyperion, I: Observations Astron. J. 97, 570–579.Google Scholar
  143. Lange, M.A. and Ahrens, T.J., 1987, The dynamic tensile strength of ice and ice-silicate mixtures, J. Geophys. Res. 88, 1197–1208.ADSGoogle Scholar
  144. Lee, J., Buratti, B.J., Mosher, J.A., and Hicks, M.D., 2009, The relative surface roughness of the dark sides of Iapetus from the 2005 flyby, Icarus under revision.Google Scholar
  145. Leith, A.C. and McKinnon, W.B., 1996, Is there evidence for polar wander on Europa? Icarus 120, 387–398.ADSGoogle Scholar
  146. Lopes, R.M.C., Mitchell, K.L., Stofan, E.R., Lunine, J.I., Lorenz, R., Paganelli, F., Kirk, R.L., Wood, C.A., Wall, S.D., Robshaw, L.E., Fortes, A.D., Neish, C.D., Radebaugh, J., Reffet, E., Ostro, S.J., Elachi, C., Allison, M.D., Anderson, Y., Boehmer, R., Boubin, G., Callahan, P., Encrenaz, P., Flamini, E., Francescetti, G., Gim, Y., Hamilton, G., Hensley, S., Janssen, M.A., Johnson, W.T.K., Kelleher, K., Muhleman, D.O., Ori, G., Orosei, R., Picardi, G., Posa, F., Roth, L.E., Seu, R., Shaffer, S., Soderblom, L.A., Stiles, B., Vetrella, S., West, R.D., Wye, L., and Zebker, H.A., 2007, Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar mapper, Icarus 187, 395–412, doi:10.1016/j.icarus.2006.09.006.ADSGoogle Scholar
  147. Lorenz, R.D., Stiles, B., Kirk, R.L., Allison, M., Persi del Marmo, P., Iess, L. Lunine, J.I., Ostro, S.J., and Hensley, S., 2008, Titan's rotation reveals an internal ocean and changing zonal winds, Science 319, 1649–1651.ADSGoogle Scholar
  148. Lumme, K. and Bowell, E., 1981a, Radiative transfer in the surfaces of atmosphereless bodies, I. Theory. Astron. J. 86, 1694–1704.ADSGoogle Scholar
  149. Lumme, K. and Bowell, E., 1981b, Radiative transfer in the surfaces of atmosphereless bodies, II. Interpretation of Phase Curves. Astron. J. 86, 1705–1721.ADSGoogle Scholar
  150. MacKintosh, F.C. and John, S., 1989, Diffusing-wave spectroscopy and multiple scattering of light in correlated random media, Phys. Rev. B 40, 2383–2406.ADSGoogle Scholar
  151. Manga, M. and Wang, C.Y., 2007, Pressurized oceans and the eruption of liquid water on Europa and Enceladus, Geophys. Res. Lett. 34, L07202.Google Scholar
  152. Marchi, S., Barbieri, C., Dell'Oro, A., and Paolicci, P., 2002, Hyperion-Iapetus: Collisional relationships, Astron. Astrophys. 381, 1059–1065.ADSGoogle Scholar
  153. Martens, H.R., Reisenfeld, D.B., Williams, J.D., Johnson, R.E., Smith, H.T., Baragiola, R.A., Thomsen, M.F., Young, D.T., and Sittler, E.C. 2007, Molecular oxygen ions in Saturn's inner magnetosphere for the first 24 Cassini orbits, AGU abstract #P43A-1032.Google Scholar
  154. Mastrapa, R.M., Bernstein, M.P., Sandford, S.A., Roush, T.L., Cruik-shank, D.P., and Dalle Ore, CM., 2008, Optical constants of amorphous and crystalline H2O-ice in the near infrared from 1.1 to 2:6 μm, Icarus 197, 307–320, DOI:10.1016/j.icarus.2008.04.008, 307–320.ADSGoogle Scholar
  155. Matson, D.L., Castillo-Roget, J.C., McKinnon, Schubert, G., and Sotin, C, 2009, Thermal evolution and internal structure. In Saturn from Cassini-Huygens (Dougherty, M., Esposito, L., and Krimigis, S. (eds.)), Springer NY, 2009.Google Scholar
  156. Matsuyama, I. and Nimmo, F., 2007, Rotational stability of tidally deformed planetary bodies, J. Geophys. Res. 112, E11003.ADSGoogle Scholar
  157. Matsuyama, I. and Nimmo, F., 2008, Tectonic patterns on reoriented and despun planetary bodies, Icarus 195, 459–473.ADSGoogle Scholar
  158. Matthews, R.A.J., 1992, The darkening of Iapetus and the origin of Hyperion, Quart. J. Roy. Astron. Soc. 33, 253–258.ADSGoogle Scholar
  159. McDonald, G.D. Thompson, W.R., Heinrich, M., Khare, B.N., and Sagan, C, 1994, Chemical investigation of Titan and Triton tholins, Icarus 108, 137–145.ADSGoogle Scholar
  160. McKinnon, W.B. and Melosh, H.J., 1980, Evolution of planetary litho-spheres — Evidence from multi-ringed structures on Ganymede and Callisto, Icarus 44, 454–471.ADSGoogle Scholar
  161. McKinnon, W.B., 1985, Geology of icy satellites. In: Ices in the Solar System (Klinger, J., Benest, D.,Dollfus, A., Smoluchowski, R. (eds.)), Reidel, Dordrecht, pp. 820–856.Google Scholar
  162. McNutt, M.K., 1984, Lithospheric flexure and thermal anomalies, J. Geophys. Res. 89, 1180–1194.Google Scholar
  163. Melosh H.J., 1975, Large impact basins and the Moon's orientation, Earth Planet Sci. Lett. 26, 353–360.ADSGoogle Scholar
  164. Melosh, H.J., 1977, Global tectonics of a despun planet, Icarus 31, 221–243.ADSGoogle Scholar
  165. Melosh, H.J., 1980, Tectonic patterns on a tidally distorted planet, Icarus 43, 334–337.ADSGoogle Scholar
  166. Melosh, H.J. and F. Nimmo, 2009, An intrusive dike origin for Iapetus' enigmatic ridge? 40th Lunar and Planetary Science Conference, Houston, abstract #2478.Google Scholar
  167. Mendis, D.A. and Axford, W.I., 1974, Satellites and magnetospheres of the outer planets, Ann. Rev. Earth Plant. Sci. 2, 419–475.ADSGoogle Scholar
  168. Miyamoto, H., Mitri, G., Showman, A.P, and Dohm, J.M., 2005, Putative ice flows on Europa: Geometric patterns and relation to topography collectively constrain material properties and effusion rates, Icarus 177, 413–424.ADSGoogle Scholar
  169. Moore, J.M. and Ahern, J.L., 1983, The geology of Tethys, JGR, 83, A577–A584.ADSGoogle Scholar
  170. Moore, J.M., 1984, The tectonic and volcanic history of Dione, Icarus 59, 205–220.ADSGoogle Scholar
  171. Moore, J.M., Horner, V.M., and Greeley, R., 1985, The geomorphology of Rhea: Implications for geologic history and surface processes, J. Geophys. Res. 90, C785–C795.ADSGoogle Scholar
  172. Moore, J.M., Asphaug, E., Morrison, D., Klemaszewski, J.E., Sullivan, R.J., Chuang, F., Greeley, R., Bender, K.C., Geissler, P.E., Chapman, C.R., Helfenstein, P., Pilcher, C.B., Kirk, R.L., Giese, B., and Spencer, J.R., 1999, Mass movement and landform degradation on the icy Galilean satellites: Results from the Galileo nominal mission, Icarus 140, 294–312.ADSGoogle Scholar
  173. Moore, J.M., Schenk, P.M., Bruesch, L.S., Asphaug, E., and McKinnon, W.B., 2004, Large impact features on middle-sized icy satellites, Icarus 171, 421–443.ADSGoogle Scholar
  174. Morrison, D., Johnson, TV., Shoemaker, E.M., Soderbloom, L.A., Thomas, P., Veverka, J., and Smith, B.A. 1984, Satellites of Saturn: Geological perspective. In: Saturn (Gehrels, T. and Matthews, M. S. (eds.)), Univ. Ariz. Press, Tucson, pp. 609–63.Google Scholar
  175. Morrison, D., Owen, T, and Soderblom, L.A., 1986, The satellites of Saturn. In: Satellites (Eds. Burns, J.A., Matthews, M.S. (eds.)) Univ. Ariz. Press, Tucson, pp. 764–801.Google Scholar
  176. Mueller, S. and McKinnon, W.B., 1988, 3-layered models of Ganymede and Callisto — compositions, structures and aspects of evolution, Icarus 76, 437–464.ADSGoogle Scholar
  177. Murchie, S.L. and Head, J.W., 1986, Global reorientation and its effect on tectonic patterns on Ganymede, Geophys. Res. Lett. 13, 345–348.ADSGoogle Scholar
  178. Murphy, R.E., Cruikshank, D.P., Morrison, D., 1972, Radii, albedos, and 20-micron brightness temperatures of Iapetus and Rhea, Astro-phys. J. Lett. 177, L93–L96.ADSGoogle Scholar
  179. Murray, C.D. and Dermott, S.F., 1999, Solar System Dynamics, Cambridge Univ. Press, Cambridge, NY.MATHGoogle Scholar
  180. Nelson, R.M., Lane, A.L., Matson, D.L., Veeder, G.J., Buratti, B.J., and Tedesco, E.F., 1987, Spectral geometric albedos of the Galilean satellites from 0.24 to 0.34 micrometers: Observations with the International Ultrviolett Explorer, Icarus 72, 358–380.ADSGoogle Scholar
  181. Nelson, R.M., Kamp, L.W., Lopes, R.M.C., Matson, D.L., Kirk, R.L., Hapke, B.W., Wall, S.D., Boryta, M.D., Leader, F.E., Smythe, W.D.,. Mitchell, K.L., Baines, K.H., Jaumann, R., Sotin, C., Clark, C.N., Cruikshank, D.P., Drossart, P., Lunine, J.I., Combes, M., Bellucci, G., Bibring, J.-P., Capaccioni, F., Cerroni, P., Coradini, A., Formisano, V., Filacchione, G., Langevin, Y., McCord, T.B., Mennella, V., Nicholson, P.D., Sicardy, B., Irwin, P.G.J., and Pearl, J.C., 2009a, Photometric changes on Saturn's Titan: Evidence for active Cryovolcanism, Geophys. Res. Lett. 36, L04202, doi:10.1029/2008GL036206.Google Scholar
  182. Nelson, R.M., Kamp, L.W., Matson, D.L., Irwin, P.G.J., Baines, K.H., Boryta, M.D., Leader, F.E., Jaumann, R., Smythe, W.D., Sotin, C., Clark, C.N., Cruikshank, D.P., Drossart, P., Pearl, J.C., Habke, B.W., Lunine, J.I., Combes, M., Bellucci, G., Bibring, J.-P., Capaccioni, F., Cerroni, P., Coradini, A., Formisano, V., Filacchione, G., Langevin, R.Y., McCord, T.B., Mennella, V., Nicholson, P.D., and Sicardy, B., 2009b, Saturn's Titan: Surface change, ammonia, and implications for atmospheric and tectonic activity, Icarus 199, 429–441.ADSGoogle Scholar
  183. Nesvorny, D., Alverellos, J.L., Dones, L., and Levison, H.F., 2003, Orbital and collisional evolution of the irregular satellites, Astron. J. 126, 398–429.ADSGoogle Scholar
  184. Newman, S.F., Buratti, B.J., Jaumann, R., Bauer, J.M., and Momary, T.M., 2007, Hydrogen peroxide on Enceladus, Ap. J. 670, L143–L146.ADSGoogle Scholar
  185. Newman, S.F., Buratti, B.J., Brown, R.H., Jaumann, R., Bauer, J., and Momary, T., 2008, Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini, Icarus 193, 397–406.ADSGoogle Scholar
  186. Newman, S.F., Buratti, B.J., Brown, R.H., Jaumann, R., Bauer, J., and Momary, T., 2009, Water ice crystallinity and grain sizes on Dione Icarus, in press.Google Scholar
  187. Nimmo, F. and Gaidos, E., 2002, Thermal consequences of strike-slip motion on Europa, J. Geophys. Res. 107, 5021, 10.1029/ 2000JE001476.Google Scholar
  188. Nimmo, F., Pappalardo, R.T., and Giese, B., 2002, Elastic thickness and heat flux estimates on Ganymede, Geophys. Res. Lett. 29, 1158.ADSGoogle Scholar
  189. Nimmo, F., 2004a, Stresses generated in cooling viscoelastic ice shells: Application to Europa, J. Geophys. Res. 109, E12001, doi:10.1029/2004JE002347.ADSGoogle Scholar
  190. Nimmo, F., 2004b, Dynamics of rifting and modes of extension on icy satellites, J. Geophys. Res. 109, E01003, doi:10.1029/2004JE002347.Google Scholar
  191. Nimmo, F. and Pappalardo, R.T., 2006, Diapir-induced reorientation of Saturn's moon Enceladus, Nature 441, 614–616.ADSGoogle Scholar
  192. Nimmo, F., Spencer, R.J., Pappalardo, R.T., Mullen, and M.E., 2007, Shear heating as the origin of the plumes and heat flux on Enceladus, Nature 447, 289–291.ADSGoogle Scholar
  193. Nimmo, F. and Matsuyama, I., 2007, Reorientation of icy satellites by impact basins, Geophys. Res. Lett. 34, L19203.ADSGoogle Scholar
  194. Noland, M., Veverka, J., Morrison, D., Cruikshank, D.P., Lazarewicz, A.R., Morrison, N.D., Elliot, J.L., Goguen, J., and Burns J.A., 1974, Six-color photometry of Iapetus, Titan, Rhea, Dione, and Tethys, Icarus 23, 334–354.Google Scholar
  195. Noll, K.S., Johnson, R.E., Lane, A.L., Domingue, D.L., and Weaver, H.A., 1996, Detection of ozone on Ganymede, Science 273, 341–343.ADSGoogle Scholar
  196. Noll, K.S., Roush, T.L., Cruikshank, D.P., Johnson, R.E., and Pendle-ton, Y.J., 1997, Detection of ozone on Saturn's satellites Rhea and Dione, Nature 388, 45–47.ADSGoogle Scholar
  197. Orton, G.S., Beines, K.H., Cruikshank, D.P., Krimigis, S.M., and Miller, E., 2009, Knowledge of the Saturn system prior to Cassini. In Saturn from Cassini-Huygens (Dougherty, M., Esposito, L., and Krim-igis, S. (eds.)), Springer NY, 2009.Google Scholar
  198. Ojakangas G.W. and Stevenson D.J., 1989a, Thermal state of an ice shell on Europa, Icarus 81, 220–241.ADSGoogle Scholar
  199. Ojakangas G.W. and Stevenson D.J., 1989b, Polar wander of an ice shell on Europa, Icarus 81, 242–270.ADSGoogle Scholar
  200. Ostro, S.J., Campbell, D.B., Simpson, R.A., Hudson, R.S., Chandler, J.F., Rosema, K.D., Shapiro, I.I., Standish, E.M., Winkler, R., and Yeomans, D.K., 1992, Europa, Ganymede, and Callisto — New radar results from Arecibo and Goldstone, J. Geophys. Res. 97, 18227–18244.ADSGoogle Scholar
  201. Ostro, S.J., 1993, Planetary radar astronomy, Rev. Mod. Phys. 65, 1235–1279.ADSGoogle Scholar
  202. Ostro, S.J., West, R.D., Janssen, M.A., Lorenz, R.D., Zebker, H.A., Black, G.J., Lunine, J.I., Wye, L.C., Lopes, R.M., Wall, S.D., Elachi, C., Roth, L., Hensley, S.T., Kelleher, K., Hamilton, G.A., Gim, Y., Anderson, Y.Z., Boehmer, R.A., Johnson, W.T.K., the Cassini RADAR Team, 2006, Cassini radar observations of Enceladus, Tethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe, Icarus 183, 479–490. doi:10.1016/j.icarus.2006.02.019.Google Scholar
  203. Owen, T.C., Cruikshank, D.P., Dalle Ore, C.M., Geballe, T.R., Roush, T.L., de Bergh, C., Pendleton, Y.J., and Khare, B.N., 2001, Decoding the domino: The dark side of Iapetus, Icarus 149, 160–172.ADSGoogle Scholar
  204. Pang, K.D., Voge, C.C., Rhoads J.W., and Ajello, J.M., 1984, The E-ring of Saturn and satellite Enceladus. J. Geophys. Res. 89, 9459–9470.ADSGoogle Scholar
  205. Pappalardo, R.T. and Collins, G.C., 2005, Strained craters on Ganymede, J. Struct. Geol. 27, 827–838.ADSGoogle Scholar
  206. Pappalardo, R.T. and Davis, D.M., 2007, Where's the compression? Explaining the lack of contractional structures on icy satellites, Ice, Oceans, Fire Workshop August 2007, Boulder, # 6080.Google Scholar
  207. Paranicas, C., Mitchell, D.G., Krimigis, S.M., Hamilton, D.C., Roussos, E., Krupp, N., Jones, G.H., Johnson, R.E., Cooper, J.F., and Armstrong T.P., 2008, Sources and losses of energetic protons in Saturn's magnetosphere, Icarus 197, 519–525.ADSGoogle Scholar
  208. Peters, K.J., 1992, The coherent backscatter effect: A vector formulation accounting for polarization and absorption effects and small or large scatterers, Phys. Rev. B. 46, 801–812.ADSGoogle Scholar
  209. Petrenko V.F. and Whitworth, R.W., 1999, Physics of Ice. Oxford Univ. Press, Oxford.Google Scholar
  210. Pipes, J.G., Browell, E.V., and Anderson, R.C., 1974, Reflectance of amorphous-cubic NH3 frosts and amorphous-hexagonal H2O frosts at 77 K from 1,400 to 3,000 A. Icarus 21, 283–291.ADSGoogle Scholar
  211. Pitman, K.M., Buratti, B.J., Mosher, J.A., Bauer, J.M., Momary, T.W., Brown, R.H., Nicholson, P.D., and Hedman, M.M., 2008, First high solar phase angle observations of Rhea using Cassini VIMS: upper limits on water vapour and geologic activity, Astrophys. J. 160, L65, doi:10.1086/589745.ADSGoogle Scholar
  212. Plescia, J.B. and Boyce, J.M., 1982, Crater densities and geological histories of Rhea, Dione, Mimas and Tethys, Nature 295, 285–290.Google Scholar
  213. Plescia, J.B. and Boyce, J.M., 1983, Crater numbers and geological histories of Iapetus, Enceladus, Tethys and Hyperion, Nature 301, 666–670.Google Scholar
  214. Plescia, J.B., 1983, The geology of Dione, Icarus 56, 255–277.ADSGoogle Scholar
  215. Porco, C.C., West, R.A., Squyres, S., McEwen, A., Thomas, P., Murray, C.D., Del Genio, A., Ingersoll, A.P., Johnson, T.V., Neukum, G., Veverka, J., Dones, L., Brahic, A., Burns, J.A., Haemmerle, V., Knowles, B., Dawson, D., Roatsch, T., Beurle, K., and Owen, W., 2004, Cassini imaging science: Instrument characteristics and capabilities and anticipated scientific investigations at Saturn, Space Sci. Rev., 115, 363–497, doi:10.1007/s11214-004-1456-7, 2004.ADSGoogle Scholar
  216. Porco, C.C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J.A., Charnoz, S., Cooper, N., Dawson, D.D., Del Genio, A.D., Denk, T., Dones, L., Dyudina, U., Evans, M.W., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A.P., Jacobson, R.A., Johnson, T.V., McEwen, A., Murray, C.D., Neukum, G., Owen, W.M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P.C., Tiscareno, M., Turtle, E., Vasavada, A.R., Veverka, J., Wagner, R., and West, R., 2005a, Cassini imaging science: initial results on Phoebe and Iape-tus, Science 307, 1237–1242, doi:10.1126/science.1107981.ADSGoogle Scholar
  217. Porco, C.C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J.A., Charnoz, S., Cooper, N., Dawson, D.D., Del Genio, A.D., Denk, T., Dones, L., Dyudina, U., Evans, M.V., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A.P., Jacobson, R.A., Johnson, T.V., McEwen, A., Murray, C.D., Neukum, G., Owen, W.M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P., Tiscareno, M., Turtle, E., Vasavada, A.R., Veverka, J., Wagner, R., West, R. et al., 2005b, Cassini imaging science: Initial results on Saturn's rings and small satellites, Science 307, 1226–1236.ADSGoogle Scholar
  218. Porco, C.C. Helfenstein, P., Thomas, P.C., Ingersoll, A.P., Wisdom, J., West, R., Neukum, G., Denk, T., Wagner, R., Roatsch, T., Kieffer, S., Turtle, E., McEwen, A., Johnson, T.V., Rathbun, J., Veverka, J., Wilson, D., Perry, J., Spitale, J., Brahic, A., Burns, J.A., DelGenio, A.D., Dones, L., Murray, C.D., and Squyres, S., 2006, Cassini observes the active south pole of Enceladus, Science 311, 1393–1401.ADSGoogle Scholar
  219. Postberg, F., Kempf, S., Hillier, J.K., Srama, R., Green, S.F., McBride, N., Grün, E., 2008, The E-ring in the vicinity of Enceladus II, Probing the moon's interior — The composition of E-ring particles, Icarus 193, 438–454.ADSGoogle Scholar
  220. Prockter, L.M. and Pappalardo, R.T., 2000, Folds on Europa: Implications for crustal cycling and accommodation of extension, Science 289, 941–943.ADSGoogle Scholar
  221. Rappaport, N.J., Iess, L., Tortora, P., Asmar, S.W., Somenzi, L., Anabtawi, A., Barbinis, E., Fleischman, D.U., and Goltz, G.L., 2005, Gravity Science in the Saturnian system: The masses of Phoebe, Iapetus, Dione and Enceladus, DPS abstract #39.02.Google Scholar
  222. Roatsch, T., Jaumann, R., Stephan, K., and Thomas, P.C., 2009, Cartographic mapping of the icy satellites using ISS and VIMS data. In: Saturn from Cassini-Huygens (Dougherty, M., Esposito, L., and Krimigis, S. (eds.)), Springer NY, 2009.Google Scholar
  223. Roberts, J.H. and F. Nimmo, 2009, Tidal dissipation due to despinning and the equatorial ridge on Iapetus, 40th Lunar and Planetary Science Conference, Houston, abstract #1927.Google Scholar
  224. Roering, J.J., Kirchner, J.W., Sklar, L.S., and Dietrich, W.E., 2001, Hill-slope evolution by nonlinear creep and landsliding: An experimental study, Geology 29, 143–146.ADSGoogle Scholar
  225. Roush, T.L., Cruikshank, D.P., and Owen, T.C., 1995, Surface ices in the outer solar system. In: Volatiles in the Earth and Solar System (Farley, K.A. (ed.)), Am. Inst. Phys. Conf. Proc. 341, 143–153.Google Scholar
  226. Rubincam, D.P., 2003, Polar wander on Triton and Pluto due to volatile migration, Icarus 163, 469–478.ADSGoogle Scholar
  227. Sack, N.J., Johnson, R.E., Boring, J.W., and Baragiola, R.A., 1992, The effect of magnetospheric ion bombardment on the reflectance of Eu-ropa's surface, Icarus 100, 534–540.ADSGoogle Scholar
  228. Schenk, P.M., 1989a, Mimas grooves, the Herschel impact, and tidal stresses, 20th Lunar and Planetary Science Conference, Houston, abstract #960.Google Scholar
  229. Schenk, P.M., 1989b, Crater morphology and modification on the icy satellites of Uranus and Saturn: Depth/diameter and central peak occurrence, J. Geophys. Res. 94, 3815–3832.Google Scholar
  230. Schenk, P.M., 1993, Central pit and dome craters — Exposing the interiors of Ganymede and Callisto, J. Geophys. Res. 98, 7475–7498.ADSGoogle Scholar
  231. Schenk, P.M., McKinnon, W.B., Gwynn, D., and Moore, J.M., 2001, Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas, Nature 410, 57–60.ADSGoogle Scholar
  232. Schenk P.M. and Moore, J.M., 2007, Impact crater topography and morphology on Saturnian mid-sized satellites, 38th Lunar and Planetary Science Conference, Houston, abstract #2305.Google Scholar
  233. Schenk, P.M., Matsuyama, I., and Nimmo, F., 2008, True polar wander on Europa from global-scale small-circle depressions, Nature 453, 368–371.ADSGoogle Scholar
  234. Schmedemannn, N., Neukum, G., Denk, T., and Wagner, R., 2008, Stratigraphy and surface ages on Iapetus and other Saturnian satellites, 39th Lunar and Planetary Science Conference, Houston, abstract #2070.Google Scholar
  235. Schmidt, J., Brilliantov, N., Spahn, F., and Kempf, S., 2008, Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures, Nature 451, 685–688, doi:10.1038/nature06491.ADSGoogle Scholar
  236. Schmitt, B., C. De Bergh M. Festou (eds.), 1998, Solar System Ices, Kluwer, Dordrecht.Google Scholar
  237. Seal, D., Brown, R.H., Buffington, B., Dougherty, M.K., and Esposito, L.W., 2009, Cassini Huygens Extended Mission, Saturn from Cassini-Huygens (Dougherty, M., Esposito, L., and Krimigis, S. (eds.)), Springer, 2009.Google Scholar
  238. Shkuratov, Yu., Starukhina, L., Hoffmann, H., Arnold, G., 1999, A model of spectral albedo of particulate surfaces: implication to optical properties of the Moon, Icarus 137, 235–246.ADSGoogle Scholar
  239. Shkuratov, Y.G., Stankevich, D.G., Petrov, D.V., Pinet, P.C, Cord, A.M., Daydou, Y.H., and Chevrel, S.D., 2005, Interpreting photometry of regolith-like surfaces with different topographies: Shadowing and multiple scattering, Icarus 173, 3–15.ADSGoogle Scholar
  240. Showman A.P., Stevenson D.J., and Malhotra, R., 1997, Coupled orbital and thermal evolution of Ganymede, Icarus 129, 367–383.ADSGoogle Scholar
  241. Showman A.P., Mosqueira I., and Head J.W., 2004, On the resurfacing of Ganymede by liquid-water volcanism, Icarus 172, 625–640.ADSGoogle Scholar
  242. Showalter, M.R., 1991, Visual detection of 1981 S13, Saturn's eighteenth satellite, and its role in the Encke Gap, Nature 351, 709–713.Google Scholar
  243. Showalter, M.R., Cuzzi, J.N., and Larson, S.M., 1991, Structure and particle properties of Saturn's E Ring, Icarus 94, 451–473.ADSGoogle Scholar
  244. Simonelli, D.P., Kay, J., Adinolfi D., Veverka, J., Thomas, P.C., and Helfenstein, P., 1999, Phoebe: Albedo map and photometric properties, Icarus 138, 249–258.ADSGoogle Scholar
  245. Sittler, E.C., Andre, N., Blanc, M.; Burger, M., Johnson, R.E., Coates, A., Rymer, A., Reisenfeld, D., Thomsen, M.F.; Persoon, A., Dougherty, M., Smith, H.T., Baragiola, R.A., Hartle, R.E., Chor-nay, D., Shappirio, M.D., Simpson, D., McComas, D.J., and Young, D.T., 2008, Ion and neutal sources and sinks within Saturn's inner magnetosphere: Cassini results, Planet. Space Sci. 56, 3–18, doi:10.1016/j.pss.2007.06.006.ADSGoogle Scholar
  246. Smith, B.A., Soderblom, L., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S.A., Hansen, C.J., Johnson, T.V., Mitchell, J.L., Terrile, R.J., Carr, M., Cook, II, A.F., Cuzzi, J., Pollack, J.B., Danielson, G.E., Ingersoll, A., Davies, M.E., Hunt, G.E., Masursky, H., Shoemaker, E., Morrison, D., Owen, T., Sagan, C., Vev-erka, J., Strom, R., and Suomi, V.E., 1981, Encounter with Saturn: Voyager 1 imaging science results, Science 212, 163–191, doi:10.1126/science.212.4491.163.ADSGoogle Scholar
  247. Smith, B.A. Soderblom, L., Batson, R., Bridges, P., Inge, J., Masursky, H., Shoemaker, E., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S.A., Hansen, C.J., Johnson, T.V., Mitchell, J.L., Terrile, R.J., Cook, II, A.F., Cuzzi, J., Pollack, J.B., Danielson, G., Ingersoll, A.P., Davies, M.E., Hunt, G.E., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom, R., and Suomi, V.E., 1982, A new look at the Saturn system: The Voyager 2 images, Science 215, 504–536, doi:10.1126/science.215.4532.504.ADSGoogle Scholar
  248. Soter, S., 1974, Brightness of Iapetus, Presented at IAU Colloq. 28, Cornell Univ, Ithaca.Google Scholar
  249. Sotin C., Grasset O., and Beauchesne, S., 1998, Thermodynamical properties of high pressure ices. Implications for the dynamics and internal structure of large icy satellites. In: Solar System Ices (Schmitt, B., De Bergh, C., and Festou, M. (eds.)), Kluwer, Dordrecht, The Netherlands, pp. 79–96.Google Scholar
  250. Sotin, C., Head, J.W., and Tobie, G., 2002, Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting, Geophys. Res. Lett., 29, doi:10.1029/2001GL013844.Google Scholar
  251. Sotin, C., Stevenson, D.J., Rappaport, N.J., Mitri, G., and Schubert, G., 2009, Titan's interior structure. In: Titan from Cassini-Huygens (Brown, R., Lebreton, J.-P., and Waite, H. (eds.)), Springer NY, 2009.Google Scholar
  252. Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiß, M., Kempf, S., Srama, R., Dikarev, V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremcevic, M., Tuzzolino, A.J., Economou, T., and Grün, E., 2006, Cassini dust measurements at Enceladus and implications for the origin of the E ring, Science 311, 1416–1418.ADSGoogle Scholar
  253. Spencer, J.R., Calvin, W.M., and Person, M.J., 1995, CCD spectra of the Galilean satellites: Molecular oxygen on Ganymede. J. Geophys. Res. 100, 19049–19056.ADSGoogle Scholar
  254. Spencer, J.R., 1998, Upper limits for condensed O2 on Saturn's icy satellites and rings, Icarus 136, 349–352.ADSGoogle Scholar
  255. Spencer, J.R., Pearl, J.C., Segura, M., and The Cassini CIRS Team, 2005, Cassini CIRS observations of Iapetus' thermal emission, 36th Lunar and Planetary Science Conference, Houston, abstract #2305.Google Scholar
  256. Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F.M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., and Lopes, R.M.C., 2006, Cassini encounters Enceladus: Background and the discovery of a south polar hot spot, Science 311, 1401–1405.ADSGoogle Scholar
  257. Spencer, J., Barr, A., Esposito, L., Helfenstein, P., Ingersoll, A., Jaumann, R., Kieffer, S., McKay, C., Nimmo, F., Porco, C.C., and Waite, W., 2009, Enceladus: a cryovolcanic active satellite. In: Saturn from Cassini-Huygens (Dougherty, M., Esposito, L., and Krimigis, S. (eds.)), Springer NY, 2009.Google Scholar
  258. Spencer, J.R. and Denk, T., 2009, Formation of Iapetus's Extreme Albedo Dichotomy by Exogenically-Triggered Thermal Migration of Water Ice, Science, in revision.Google Scholar
  259. Spitale, J.N., Jacobson, R.A., Porco, C.C., and Owen, Jr., W.M., 2006, The orbits of saturn's small satellites derived from combined historic and Cassini imaging observations, Astron. J. 132, 692.ADSGoogle Scholar
  260. Spitale, J.N. and Porco, C.C., 2007, Association of the jets of Enceladus with the warmest regions on its south-polar fractures, Nature 449, 695–697.ADSGoogle Scholar
  261. Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiß, M., Kempf, S., Srama, R., Dikarev, V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremevi, M., Tuzzolino, A.J., Economou, T., and Grün, E., 2006, Cassini dust measurements at Enceladus and implications for the origin of the E ring, Science, 311, 1416–1418, doi:10.1126/science.1121375.ADSGoogle Scholar
  262. Squyres, S.W., 1980, Volume changes in Ganymede and Callisto and the origin of grooved terrain, Geophys. Res. Lett. 7, 593–596.ADSGoogle Scholar
  263. Squyres, S.W. and Sagan, C., 1983, Albedo asymmetry of Iapetus, Nature 303, 782–785.ADSGoogle Scholar
  264. Squyres, S.W. Buratti, B., Veverka, J., and Sagan, C., 1984, Voyager photometry of Iapetus, Icarus 59, 426–435.ADSGoogle Scholar
  265. Squyres, S.W. and Croft, S.K., 1986, The tectonics of icy satellites. In: Satellites (Matthews, M.S. (ed.)), Univ. Ariz. Press, Tucson, pp. 293–341.Google Scholar
  266. Stephan, K., Jaumann, R., Wagner, R., Roatsch, Th., Clark., R.N., Cruikshank, D.P., Hibbitts, C.A., Hansen, G.B., Buratti, B.J., Filiacchione, G., Baines, K.H., Nicholson, P.D., McCord, T.B., and Brown, R.H, 2008, Relationship of Dione's spectral properties to geological surface units, 39th Lunar and Planetary Science Conference, Houston, abstract #1717.Google Scholar
  267. Stevenson, D., 1982, Volcanism and igneous processes in small icy satellites, Nature 298, 142–144.ADSGoogle Scholar
  268. Strazzulla, G., 1998, Chemistry of ice induced by bombardment with energetic charged particles. In: Solar System Ices (B. Schmitt et al. (ed.)), Kluwer Academic Publ., Dordrecht, The Netherlands, pp. 281–302.Google Scholar
  269. Tabak, R.G. and Young, W.M., 1989, Cometary collisions and the dark material on Iapetus. Earth, Moon, Planets 44, 251–264.Google Scholar
  270. Tian, F., Stewart, A.I.F., Toon, O.B., Larsen, K.W., Esposito, L.W., 2007, Monte Carlo simulations of the water vapor plumes on Ence-ladus, Icarus 188, 154–161.ADSGoogle Scholar
  271. Thomas, P.C., Veverka, J., Morrison, D., Davies, M., and Johnson, TV., 1983, Saturn's small satellites voyager imaging results, J. Geophys. Res. 88, 8743–8754.ADSGoogle Scholar
  272. Thomas, P. and Veverka, J., 1985, Hyperion: Analysis of voyager observations, Icarus 64: 414–424.ADSGoogle Scholar
  273. Thomas P.G., 1988, The tectonic and volcanic history of Rhea as inferred from studies of scarps, ridges, troughs and other lineaments, Icarus 74, 554–567.ADSGoogle Scholar
  274. Thomas, PC, 1989, Shapes of Small Satellites, Icarus 77, 248–274.ADSGoogle Scholar
  275. Thomas, PC, Armstrong, J., Asmar, S.W., Burns, J.A., Denk, T, Giese, B., Helfenstein, P., Iess, L., Johnson, TV, McEwen, A.S., Nicolaisen, L., Porco, C.C., Rappaport, N., Richardson, J., Somenzi, L., Tortora, P., Turtle. E.P., Veverka, J., 2007a, Hyperion's sponge-like appearance, Nature 448, 50–53, doi: 10.1038/nature05779.ADSGoogle Scholar
  276. Thomas, PC, Burns, J.A., Helfenstein, P., Squyres, S., Veverka, J., Porco, C, Turtle, E.P., McEwen, A., Denk, T, Giese, B., Roatsch, T, Johnson, TV, Jacobson, R.A., 2007b, Shapes of the Satur-nian icy satellites and their significance, Icarus 190, 573–584. doi:10.1016/j.icarus.2007.03.012.ADSGoogle Scholar
  277. Turcott, D.L. and Schubert, G., 2002, Geodynamics, 2nd ed. Cambridge Univ. Press, Cambridge.Google Scholar
  278. Verbiscer, A.J. and Veverka, J., 1989, Albedo dichotomy of Rhea: Hapke analysis of Voyager photometry, Icarus 82, 336–353.ADSGoogle Scholar
  279. Verbiscer, A.J. and Veverka, J., 1992, Mimas: Photometric roughness and albedo map, Icarus 99, 63–69.ADSGoogle Scholar
  280. Verbiscer, A.J. and Veverka, J., 1994, A photometric study of Ence-ladus, Icarus 110, 155–164.ADSGoogle Scholar
  281. Verbiscer, A.J., French, R.G., and McGhee, C.A., 2005, The opposition surge of Enceladus: HST observations 0:338–1:022 μm, Icarus 173, 66–83.ADSGoogle Scholar
  282. Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfenstein, P., Nelson, M.J., Smith, J.D., and Wilson, J.C., 2006, Near-infrared spectra of the leading and trailing hemispheres of Enceladus, Icarus 182, 211–223.ADSGoogle Scholar
  283. Verbiscer, A., French, R., Showalter, M., and Helfenstein, P., 2007, Enceladus: Cosmic graffiti artist caught in the act, Science 315, 815.ADSGoogle Scholar
  284. Verbiscer, A.J., Skrutskie, M., Wilson, J., Nelson, M., Helfenstein, P., 2008, Ammonia hydrate in the Saturnian System, Bulletin of the American Astronomical Society, 40, 510.ADSGoogle Scholar
  285. Veverka, J., Thomas, PC, Johnson, TV, Matson, D., and Housen, K.R., 1986, The physical characteristics of satellites surfaces. In Satellites (Burns, J.A., Matthews, M.S. (eds.)), Univ. Ariz. Press, Tucson, pp. 242–402.Google Scholar
  286. Vilas, F., Larson, S.M., Stockstill, K.R., and Gaffey, M.J., 1996, Unraveling the zebra: Clues to the Iapetus dark material composition, Icarus 124, 262–267.ADSGoogle Scholar
  287. Vilas, F., Jarvis, K.S., Barker, E.S., Lederer, S.M., Kelly, M.S., and Owen, T., 2004, Iapetus dark and bright material: giving compositional interpretation some latitude, Icarus 170, 125–130.ADSGoogle Scholar
  288. Wahr, J., Selvans, Z.A., Mullen, M.E., Barr, A.C., Collins, G.C., Selvans, M.M., Pappalardo, and R.T., 2009, Modeling stresses on satellites due to non-synchronous rotation and orbital eccentricity using gravitational potential theory, Icarus 200, 188–206.ADSGoogle Scholar
  289. Wagner R. et al., Neukum, G., Giese, B., Roatsch, T., Wolf, U., Denk, T., and the Cassini ISS Team, 2006, Geology, ages and topography of Saturn's satellite Dione observed by the Cassini ISS camera, 37th Lunar and Planetary Science Conference, Houston, abstract #1805.Google Scholar
  290. Wagner, R.J., Neukum, G., Giese, B., Roatsch, T., and Wolf, U., 2007, The global geology of Rhea: Preliminary implications from the Cassini ISS data, 38th Lunar and Planetary Science Conference, Houston, abstract #1958.Google Scholar
  291. Wagner, R.J., Neukum, G., Giese, B., Roatsch, T., Denk, T., Wolf, U., and Porco, C.C., 2008, Geology of Saturn's satellite Rhea on the basis of the high-resolution images from the targeted flyby 049 on Aug. 30, 2007, 39th Lunar and Planetary Science Conference, Houston, abstract #1930.Google Scholar
  292. Wagner, R.J., Neukum, G., Stephan, K., Roatsch, T., Wolf, U., and Porco, C.C., 2009, Stratigraphy of tectonic features on Saturn's satellite Dione derived from Cassini ISS camera data, 40th Lunar and Planetary Science Conference, Houston, abstract #2142.Google Scholar
  293. Waite, J.H., Jr., Combi, M.R., Ip, W.H., Cravens, T.E., McNutt, R.L., Jr., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H., Gell, D., Magee, B., Fletcher, G., Lunine, J., and Tseng, W.L., 2006, Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure, Science 311, 1419–1422.ADSGoogle Scholar
  294. Warren, S.G., 1982. Optical properties of snow, Rev. Geophys. Space Phys. 20, 67–89.ADSGoogle Scholar
  295. Willemann, R.J., 1984, Reorientation of planets with elastic litho-spheres, Icarus 60, 701–709.ADSGoogle Scholar
  296. Wilson, P.D. and Sagan, C., 1995, Spectrophotometry and organic matter on Iapetus, 1. Composition models, J. Geophys. Res. 100, 7531–7537.ADSGoogle Scholar
  297. Wilson, P.D. and Sagan, C., 1996, Spectrophotometry and organic matter on Iapetus, 2: Models of interhemispheric asymmetry, Icarus 122, 92–106.ADSGoogle Scholar
  298. Wilson L., Head J.W., and Pappalardo R.T., 1997, Eruption of lava flows on Europa: Theory and application to Thrace Macula, J. Geophys. Res. 102, 9263–9272.ADSGoogle Scholar
  299. Wisdom, J., Peale, S.J., and Mignard, F., 1984, The chaotic rotation of Hyperion, Icarus 58, 137–152.ADSGoogle Scholar
  300. Wisdom, J., 2004, Spin-orbit secondary resonance dynamics of Ence-ladus, Astron. J. 128, 484–491.ADSGoogle Scholar
  301. Yoder, C.F., 1995, Astrometric and geodetic properties of Earth and the Solar System. In: Global Earth Physics (Ahrens, T.J. (ed.)), Amer. Geophys. Union Washington, pp. 1–31.Google Scholar
  302. Zellner, B., 1972, On the nature of Iapetus, Astrophys. J. Lett. 174, L107–L109.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ralf Jaumann
    • 1
    • 2
  • Roger N. Clark
    • 3
  • Francis Nimmo
    • 4
  • Amanda R. Hendrix
    • 5
  • Bonnie J. Buratti
    • 5
  • Tilmann Denk
    • 2
  • Jeffrey M. Moore
    • 6
  • Paul M. Schenk
    • 7
  • Steve J. Ostro
    • 5
  • Ralf Srama
    • 8
  1. 1.Institute of Planetary ResearchDLRBerlinGermany
  2. 2.Institute of Geological SciencesFreie Universität BerlinBerlinGermany
  3. 3.Denver Federal CenterU.S. Geological SurveyDenverUSA
  4. 4.Department of Earth and Planetary SciencesUniversity of California Santa CruzSanta CruzUSA
  5. 5.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  6. 6.NASA Ames Research CenterUSA
  7. 7.Lunar and Planetary InstituteHoustonUSA
  8. 8.Max Planck Institut für KernphysikHeidelbergGermany

Personalised recommendations