Icy Satellites of Saturn: Impact Cratering and Age Determination

  • Luke Dones
  • Clark R. Chapman
  • William B. McKinnon
  • H. Jay Melosh
  • Michelle R. Kirchoff
  • Gerhard Neukum
  • Kevin J. Zahnle


Saturn is the first giant planet to be visited by an orbiting spacecraft that can transmit large amounts of data to Earth. Crater counts on satellites from Phoebe inward to the regular satellites and ring moons are providing unprecedented insights into the origin and time histories of the impacting populations. Many Voyager-era scientists concluded that the satellites had been struck by at least two populations of impactors. In this view, the Population I im-pactors, which were generally judged to be “comets” orbiting the Sun, formed most of the larger and older craters, while Population II impactors, interpreted as Saturn-orbiting ejecta from impacts on satellites, produced most of the smaller and younger craters. Voyager data also implied that all of the “ring moons,” and probably some of the mid-sized classical moons, had been catastrophically disrupted and reac-creted since they formed. We examine models of the primary impactor populations in the Saturn system. At the present time, “ecliptic comets,” which likely originate in the Kuiper Belt/Scattered Disk, are predicted to dominate impacts on the regular satellites and ring moons, but the models require extrapolations in size (from the observed Kuiper Belt Objects to the much smaller bodies that produce the craters) or in distance (from the known active Jupiter family comets to 9.5 AU). Phoebe, Iapetus, and perhaps even moons closer to Saturn have been struck by irregular satellites as well. We describe the Nice model, which provides a plausible mechanism by which the entire Solar System might have experienced an era of heavy bombardment long after the planets formed. We then discuss the three cratering chronologies, including one based upon the Nice model, that have been used to infer surface ages from crater densities on the saturnian satellites. After reviewing scaling relations between the properties of impactors and the craters they produce, we provide model estimates of the present-day rate at which comets impact, and catastrophically disrupt, the satur-nian moons. Finally, we present crater counts on the satellites from two different groups. Many of the heavily cratered terrains appear to be nearly saturated, so it is difficult to infer the provenance of the impactors from crater counts alone. More large craters have been found on Iapetus than on any other satellite. Enceladus displays an enormous range of surface ages, ranging from the old mid-latitude plains to the extremely young South Polar Terrain. Cassini images provide some evidence for the reality of “Population II”. Most of the observed craters may have formed in one or more “cataclysms,” but more work is needed to determine the roles of heliocentric and planetocentric bodies in creating the craters.


Impact Rate Giant Planet Astronomical Unit Kuiper Belt Outer Solar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Nico Schmedemann, Amy Barr, Beau Bierhaus, Bill Bottke, Hal Levison, Alessandro Morbidelli, David Nesvorný, and David Vokrouhlický for discussions, and the editors for their patience. This research was supported by grants from the Cassini Data Analysis Program to LD, MRK, and WBM.


  1. Alvarellos, J. L., Zahnle, K. J., Dobrovolskis, A. R., Hamill, P. 2005. Fates of satellite ejecta in the Saturn system. Icarus 178, 104–123.ADSCrossRefGoogle Scholar
  2. Asphaug, E., Benz, W. 1996. Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus 121, 225–248.ADSCrossRefGoogle Scholar
  3. Barlow, N. 2008. Mars: An Introduction to its Interior, Surface and Atmosphere. Cambridge Univ. Press, Cambridge, UK, 276 pp.Google Scholar
  4. Barr, A. C., Canup, R. M. 2008. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus 198, 163–177.ADSCrossRefGoogle Scholar
  5. Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., Morbidelli, A., Eds. 2008. The Solar System Beyond Neptune. Univ. Arizona Press, Tucson, 632 pp.Google Scholar
  6. Basaltic Volcanism Study Project 1981. Basaltic Volcanism on the Terrestrial Planets. Pergamon, New York. 1286 pp.Google Scholar
  7. Benz, W., Asphaug, E. 1999. Catastrophic disruptions revisited. Icarus 142, 5–20.ADSCrossRefGoogle Scholar
  8. Bernstein, G. M., Trilling, D. E., Allen, R. L., Brown, M. E., Holman, M., Malhotra, R. 2004. The size distribution of trans-Neptunian bodies. Astron. J. 128, 1364–1390. Erratum: Astron. J. 131, 2364.ADSCrossRefGoogle Scholar
  9. Bézard, B., Lellouch, E., Strobel, D., Maillard, J.-P., Drossart, P. 2002. Carbon monoxide on Jupiter: Evidence for both internal and external sources. Icarus 159, 95–111.ADSCrossRefGoogle Scholar
  10. Bierhaus, E. B., Chapman, C. R., Merline, W. J. 2005. Secondary craters on Europa and implications for cratered surfaces. Nature 437, 1125–1127.ADSCrossRefGoogle Scholar
  11. Bierhaus, E. B., Chapman, C. R., Merline, W. J., Brooks, S. M, Asphaug E. 2001. Pwyll secondaries and other small craters on Europa. Icarus 153, 264–76.ADSCrossRefGoogle Scholar
  12. Boehnhardt, H. 2004. Split comets. In Comets II (M. C. Festou, H. U. Keller, and H. A. Weaver, Eds.), pp. 301–316. Univ. Arizona Press, Tucson.Google Scholar
  13. Bottke, W. F., Chapman, C. R. 2006. Determining the main belt size distribution using asteroid cratering records and crater saturation models. Lunar and Planetary Institute Science Conference Abstracts 37, #1349.Google Scholar
  14. Bottke, W. F., Durda, D. D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H. F. 2005. The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140.ADSCrossRefGoogle Scholar
  15. Bottke, W. F., Levison, H. F., Nesvorný, D., Dones, L. 2007. Can plan-etesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190, 203–223.ADSCrossRefGoogle Scholar
  16. Bottke, W. F., Morbidelli, A., Jedicke, R., Petit, J.-M., Levison, H. F., Michel, P., Metcalfe, T. S. 2002. Debiased orbital and absolute magnitude distribution of the Near-Earth Objects.Google Scholar
  17. Bottke, W. F., Nesvorný, D., Vokrouhlický, D., Morbidelli, A. 2009. The irregular satellites: The most collisionally evolved populations in the solar system. Astron. J., submitted.Google Scholar
  18. Brown, M. E., Barkume, K. M., Ragozzine, D., Schaller, E. L. 2007. A collisional family of icy objects in the Kuiper Belt. Nature 446, 294–296.ADSCrossRefGoogle Scholar
  19. Brunini, A. di Sisto, R. P., and Orellana, R. B. 2003. Cratering rate on the jovian system: The contribution from Hilda asteroids. Icarus 165, 371–378.ADSCrossRefGoogle Scholar
  20. Buckingham, E. 1914. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376.ADSCrossRefGoogle Scholar
  21. Castillo-Rogez, J. C., Matson, D. L., Sotin, C., Johnson, T. V., Lunine, J. I., Thomas, P. C. 2007. Iapetus' geophysics: Rotation rate, shape, and equatorial ridge. Icarus 190, 179–202.ADSCrossRefGoogle Scholar
  22. Chapman, C. R. 1990. Crater saturation simulation. Bull. Amer. Astron. Soc. 22, 1057.ADSGoogle Scholar
  23. Chapman, C. R., Cohen, B. A., Grinspoon, D. H. 2007. What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus 189, 233–245.ADSCrossRefGoogle Scholar
  24. Chapman, C. R., McKinnon, W. B. 1986. Cratering of planetary satellites. In Satellites (J. A. Burns and M. S. Matthews, Eds.), pp. 492–580. Univ. Arizona Press, Tucson.Google Scholar
  25. Charnoz, S., Morbidelli, A., Dones, L., Salmon, J. 2009. Did Saturn's rings form during the Late Heavy Bombardment? Icarus 199, 413–428.ADSCrossRefGoogle Scholar
  26. Collins, G. S., Davison, T., Elbeshausen, D., Wünnemann, K. 2009. Numerical simulations of oblique impacts: The effect of impact angle and target strength on crater shape. LPSC 40th, Abstract #1620.Google Scholar
  27. Crater Analysis Techniques Working Group 1979. Standard techniques for presentation and analysis of crater size-frequency data. Icarus 37, 467–474.ADSCrossRefGoogle Scholar
  28. Croft, S. K., Kargel, J. S., Kirk, R. L., Moore, J. M., Schenk, P. M., Strom, R. G. 1995. The geology of Triton. In Neptune and Triton (D. P. Cruikshank, Ed.), pp. 879–947. Univ. Arizona Press, Tucson.Google Scholar
  29. Del Popolo, A., Gambera, M., and Ercan, N. 2001. Migration of giant planets in planetesimal discs. Mon. Not. R. Astron. Soc. 325, 1402–1410.ADSCrossRefGoogle Scholar
  30. Di Sisto, R. P., Brunini, A. 2007. The origin and distribution of the Centaur population. Icarus 190, 224–235.ADSCrossRefGoogle Scholar
  31. Dobrovolskis, A. R., Alvarellos, J. L., Lissauer, J. J. 2007. Lifetimes of small bodies in planetocentric (or heliocentric) orbits. Icarus 188, 481–505.ADSCrossRefGoogle Scholar
  32. Dobrovolskis, A. R., Lissauer, J. J. 2004. The fate of ejecta from Hyperion. Icarus 169, 462–473.ADSCrossRefGoogle Scholar
  33. Dombard, A. J., Bray, V. J., Collins, G. S., Schenk, P. M., Turtle, E. P. 2007. Relaxation and the formation of prominent central peaks in large craters on the icy satellites of Saturn. Bull. Amer. Astron. Soc. 38, 429.ADSGoogle Scholar
  34. Dombard, A J., McKinnon, W. B. 2000. Long-term retention of impact crater topography on Ganymede. Geophys. Res. Lett. 27, 3663–3666.ADSCrossRefGoogle Scholar
  35. Dones, L. 1991. A recent cometary origin for Saturn's rings? Icarus 92, 194–203.ADSCrossRefGoogle Scholar
  36. Dones, L., Weissman, P. R., Levison, H. F., Duncan, M. J. 2004. Oort cloud formation and dynamics. In Comets II (M. C. Festou, H. U. Keller, and H. A. Weaver, Eds.), pp. 153–174. Univ. Arizona Press, Tucson.Google Scholar
  37. Duncan, M. J., Levison, H. F. 1997. A scattered comet disk and the origin of Jupiter family comets. Science 276, 1670–1672.ADSCrossRefGoogle Scholar
  38. Duncan, M., Levison, H., Dones, L. 2004. Dynamical evolution of ecliptic comets. In Comets II (M. C. Festou, H. U. Keller, and H. A. Weaver, Eds.), pp. 193–204. Univ. Arizona Press, Tucson.Google Scholar
  39. Duncan, M., Quinn, T, Tremaine, S. 1988. The origin of short-period comets. Astrophys. J. Lett. 328, L69–L73.ADSCrossRefGoogle Scholar
  40. Durda, D. D., Stern, S. A. 2000. Collision rates in the present-day Kuiper Belt and Centaur regions: Applications to surface activation and modification on comets, Kuiper Belt Objects, Centaurs, and Pluto-Charon. Icarus 145, 220–229.ADSCrossRefGoogle Scholar
  41. Esposito, L. W. 1986. Structure and evolution of Saturn's rings. Icarus 67, 345–357.ADSCrossRefGoogle Scholar
  42. Farinella, P., Paolicchi, P., Strom, R. G., Kargel, J. S., Zappalà, V. 1990. The fate of Hyperion's fragments. Icarus 83, 186–204.ADSCrossRefGoogle Scholar
  43. Fernández, J. A., Ip, W.-H. 1984. Some dynamical aspects of the accretion of Uranus and Neptune - The exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120.ADSCrossRefGoogle Scholar
  44. Fernández, J. A., Morbidelli, A. 2006. The population of faint Jupiter family comets near the Earth. Icarus 185, 211–222.ADSCrossRefGoogle Scholar
  45. Fernández, Y. 2009. Web page at̃yfernandez/cometlist.html#jf. Accessed April 25, 2009.
  46. Fernández, Y. R., Jewitt, D. C, Sheppard, S. S. 2002. Thermal properties of Centaurs Asbolus and Chiron. Astron. J. 123, 1050–1055.ADSCrossRefGoogle Scholar
  47. Francis, P. J. 2005. The demographics of long-period comets. Astrophys. J. 635, 1348–1361.ADSCrossRefGoogle Scholar
  48. Fuentes, C. I., George, M. R., Holman, M. J. 2009. A Subaru pencil-beam search for mR̃ 27 trans-Neptunian bodies. Astrophys. J. 696, 91–95.ADSCrossRefGoogle Scholar
  49. Giese, B., Denk, T., Neukum, G., Roatsch, T., Helfenstein, P, Thomas, P. C., Turtle, E. P., McEwen, A., Porco, C. C. 2008. The topography of Iapetus' leading side. Icarus 193, 359–371.ADSCrossRefGoogle Scholar
  50. Giese, B., Neukum, G., Roatsch, T, Denk, T., and Porco, C. C. 2006. Topographic modeling of Phoebe using Cassini images. Planet Space Sci. 54, 1156–1166.ADSCrossRefGoogle Scholar
  51. Giese, B., Wagner, R., Roatsch, T, Denk, T., Neukum, G. 2007. The topographies of Rhea and Iapetus in comparison. American Geophysical Union, Fall Meeting 2007, abstract #P12B-07AGU.Google Scholar
  52. Gladman, B. J., Davis, D. R., Neese, C, Jedicke, R., Williams, G., Kavelaars, J. J., Petit, J.-M., Scholl, H., Holman, M., Warrington, B., Esquerdo, G., Tricarico, P. 2009. On the asteroid belt's orbital and size distribution. Icarus 202, 104–118.ADSCrossRefGoogle Scholar
  53. Gladman, B., Kavelaars, J. J., Petit, J.-M., Morbidelli, A., Holman, M. J., Loredo, T. 2001. The structure of the Kuiper Belt: Size distribution and radial extent. Astron. J. 122, 1051–1066.ADSCrossRefGoogle Scholar
  54. Gladman, B., Marsden, B. G., VanLaerhoven, C. 2008. Nomenclature in the outer Solar System. In The Solar System Beyond Neptune (M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli, Eds.), pp. 43–57. Univ. Arizona Press, Tucson.Google Scholar
  55. Gomes, R., Levison, H. F, Tsiganis, K., Morbidelli, A. 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469.ADSCrossRefGoogle Scholar
  56. Gomes, R. S., Morbidelli, A., Levison, H. F. 2004. Planetary migration in a planetesimal disk: Why did Neptune stop at 30 AU? Icarus 170, 492–507.ADSCrossRefGoogle Scholar
  57. Groussin, O., Lamy, P., Jorda, L. 2004. Properties of the nuclei of Centaurs Chiron and Chariklo. Astron. Astrophys. 413, 1163–1175.ADSCrossRefGoogle Scholar
  58. Hahn, G., Lagerkvist, C.-I., Karlsson, O., Oja, T., Stoss, R. M. 2006. P/2004 A1 (Loneos) — A comet under transition from Saturn to Jupiter. Astronomische Nachrichten 327, 17–20.ADSCrossRefGoogle Scholar
  59. Hahn, J.M., Malhotra, R. 1999. Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117, 3041–3053.ADSCrossRefGoogle Scholar
  60. Harrington, J., de Pater, I., Brecht, S. H., Deming, D., Meadows, V., Zahnle, K., Nicholson, P. D. 2004. Lessons from Shoemaker-Levy 9 about Jupiter and planetary impacts. In Jupiter — The Planet, Satellites and Magnetosphere (Fran Bagenal, Timothy E. Dowling, William B. McKinnon, Eds.), pp. 159–184. Cambridge Univ. Press, Cambridge, UK.Google Scholar
  61. Hartmann, W. K. 1965. Terrestrial and lunar flux of large meteorites in the last two billion years. Icarus 4, 157–165.ADSCrossRefGoogle Scholar
  62. Hartmann, W. K. 1966. Early lunar cratering. Icarus 5, 406–418.ADSCrossRefGoogle Scholar
  63. Hartmann, W. K. 1984. Does crater “saturation equilibrium” occur in the Solar System? Icarus 60, 56–74.ADSCrossRefGoogle Scholar
  64. Hartmann, W. K., Neukum, G. 2001. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194.ADSCrossRefGoogle Scholar
  65. Hartmann, W. K., Ryder, G., Dones, L., Grinspoon, D. 2000. The time-dependent intense bombardment of the primordial Earth/Moon system. In Origin of the Earth and Moon (R. M. Canup and K. Righter, Eds.), pp. 493–512. Univ. Arizona Press, Tucson.Google Scholar
  66. Holman, M. J., Wisdom, J. 1993. Dynamical stability in the outer Solar System and the delivery of short period comets. Astron. J. 105, 1987–1999.ADSCrossRefGoogle Scholar
  67. Holsapple, K. A. 1993. The scaling of impact processes in planetary sciences. Ann. Rev. Earth Planet. Sci. 21, 333–373.ADSCrossRefGoogle Scholar
  68. Holsapple, K. A., Schmidt, R. M. 1982. On the scaling of crater dimensions. II — Impact processes. J. Geophys. Res. 87, 1849–1870.ADSCrossRefGoogle Scholar
  69. Horedt, G. P., Neukum, G. 1984a. Cratering rate over the surface of a synchronous satellite. Icarus 60, 710–717.ADSCrossRefGoogle Scholar
  70. Horedt, G. P., Neukum, G. 1984b. Planenetocentric versus heliocentric impacts in the jovian and saturnian satellite system. J. Geophys. Res. 89, 10,405–10,410.ADSCrossRefGoogle Scholar
  71. Horner, J., N.W. Evans, and M.E. Bailey 2004. Simulations of the population of Centaurs II: Individual objects. Mon. Not. R. Astron. Soc. 355, 321–329.ADSCrossRefGoogle Scholar
  72. Housen, K. R., Holsapple, K. A. 2003. Impact cratering on porous asteroids. Icarus 163, 102–119.ADSCrossRefGoogle Scholar
  73. Irwin, M., Tremaine, S., Żytkow, A. N. 1995. A search for slow-moving objects and the luminosity function of the Kuiper Belt. Astron. J. 110, 3082–3092.ADSCrossRefGoogle Scholar
  74. Ivanov, B. A., Neukum, G., Bottke, W. F., Jr., Hartmann, W. K. 2002. The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering Rate. In Asteroids III (W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel, Eds.), pp. 89–101. Univ. Arizona Press, Tucson.Google Scholar
  75. Jaumann, R., Neukum, G. 2009. The surface age of Titan. Lunar and Planetary Institute Science Conference Abstracts 40, abstract #1641.Google Scholar
  76. Jewitt, D. 2008. Kuiper Belt and comets: An observational perspective. Saas-Fee Advanced Course 35: Trans-Neptunian Objects and Comets (K. Altwegg, W. Benz, and N. Thomas, Eds.), pp. 1–78. Springer, New York.Google Scholar
  77. Jewitt, D. C., Trujillo, C. A., Luu, J. X. 2000. Population and size distribution of small jovian Trojan asteroids. Astron. J. 120, 1140–1147.ADSCrossRefGoogle Scholar
  78. Johnson, T. V. 1978. The galilean satellites of Jupiter — Four worlds. Ann. Rev. Earth Planet. Sci. 6, 93–125.zbMATHADSCrossRefGoogle Scholar
  79. JPL Solar System Dynamics 2009. Web page at Accessed April 25, 2009.
  80. JPL Solar System Dynamics Small-Body Data Browser 2009. Web page at Accessed April 25, 2009.
  81. Jutzi, M., Benz, W., Michel, P. 2008. Numerical simulations of impacts involving porous bodies. I. Implementing sub-resolution porosity in a 3D SPH hydrocode. Icarus 198, 242–255.ADSCrossRefGoogle Scholar
  82. Jutzi, M., Michel, P., Hiraoka, K., Nakamura, A. M., Benz, W. 2009. Numerical simulations of impacts involving porous bodies: II. Comparison with laboratory experiments. Icarus 201, 802–813.Google Scholar
  83. Kargel, J. S., Pozio, S. 1996. The volcanic and tectonic history of Ence-ladus. Icarus 119, 385–404.ADSCrossRefGoogle Scholar
  84. Kary, D. M., Dones, L. 1996. Capture statistics of short-period comets: Implications for comet D/Shoemaker-Levy 9. Icarus 121, 207–224.ADSCrossRefGoogle Scholar
  85. Kenyon, S. J., Bromley, B. C., O'Brien, D. P., Davis, D. R. 2008. Formation and collisional evolution of Kuiper Belt objects. In The Solar System Beyond Neptune (M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli, Eds.), pp. 293–313. Univ. Arizona Press, Tucson.Google Scholar
  86. Kirchoff, M. R., Schenk, P. M. 2007. Impact crater distributions on the saturnian satellites from Cassini ISS imaging — Implications for geologic Histories and ages. Amer. Geophys. Union Fall Meeting Abstracts 545.Google Scholar
  87. Kirchoff, M. R., Schenk, P. M. 2008. Bombardment history of the satur-nian satellites. Workshop on Early Solar System Impact Bombardment, LPI Contrib. 1439, abstract #3023.Google Scholar
  88. Kirchoff, M. R., Schenk, P. M. 2009a. Crater modification and geologic activity in Enceladus' heavily cratered plains: Evidence from the impact crater distribution. Icarus 202, 656–668.ADSCrossRefGoogle Scholar
  89. Kirchoff, M. R., Schenk, P. M. 2009b. Impact cratering records of the mid-sized, icy saturnian satellites. Submitted to Icarus.Google Scholar
  90. Lagerkvist, C.-I., Hahn, G., Karlsson, O., Carsenty, U. 2000. The orbital history of two periodic comets encountering Saturn. Astron. Astrophys. 362, 406–409.ADSGoogle Scholar
  91. Lamy, P. L., Toth, I., Fernández, Y. R., Weaver, H. A. 2004. The sizes, shapes, albedos, and colors of cometary nuclei. Comets II (M. C. Festou, H. U. Keller, and H. A. Weaver, Eds.), pp. 223–264. Univ. Arizona Press, Tucson.Google Scholar
  92. Laskar, J. 1996. Large scale chaos and marginal stability in the Solar System. Cel. Mech. Dyn. Astron. 64, 115–162.zbMATHMathSciNetADSCrossRefGoogle Scholar
  93. Leinhardt, Z. M., Richardson, D. C., Lufkin, G., Haseltine, J. 2009. Planetesimals to protoplanets II: Effect of debris on terrestrial planet formation. Mon. Not. R. Astron. Soc. 396, 718–728.ADSCrossRefGoogle Scholar
  94. Leinhardt, Z. M., Stewart, S. T. 2009. Full numerical simulations of catastrophic small body collisions. Icarus 199, 542–559.ADSCrossRefGoogle Scholar
  95. Lellouch, E., Bézard, B., Moreno, R., Bockelée-Morvan, D., Colum, P., Crovisier, J., Festou, M., Gautier, D., Marten, A., Paubert, G. 1997. Carbon monoxide in Jupiter after the impact of comet Shoemaker-Levy 9. Planet. Space Sci. 45, 1203–1212.ADSCrossRefGoogle Scholar
  96. Lellouch, E., Moreno, R., Paubert, G. 2005. A dual origin for Neptune's carbon monoxide? Astron. Astrophys. 430, L37–L40.ADSGoogle Scholar
  97. Levison, H. F. 1996. Comet taxonomy. In Completing the Inventory of the Solar System (T.W. Rettig and J.M. Hahn, Eds.), pp. 173–191. Astron. Soc. Pac. Conf. Proc., vol. 107, Astronomical Society of the Pacific, San Francisco.Google Scholar
  98. Levison, H. F., Dones, L., Chapman, C. R., Stern, S. A., Duncan, M. J., Zahnle, K. 2001. Could the lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151, 286–306.ADSCrossRefGoogle Scholar
  99. Levison, H. F., Duncan, M. J. 1997. From the Kuiper Belt to Jupiter-family comets: The spatial distribution of ecliptic comets. Icarus 127, 13–32.ADSCrossRefGoogle Scholar
  100. Levison, H. F., Duncan, M. J., Zahnle, K., Holman, M., Dones, L. 2000. Note: Planetary impact rates from ecliptic comets. Icarus 143, 415–420.ADSCrossRefGoogle Scholar
  101. Levison, H. F., Lissauer, J. J., Duncan, M. J. 1998. Modeling the diversity of outer planetary systems. Astron. J. 116, 1998–2014.ADSCrossRefGoogle Scholar
  102. Levison, H. F., Morbidelli, A., VanLaerhoven, C., Gomes, R., Tsiga-nis, K. 2008. Origin of the structure of the Kuiper Belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196, 258–273.ADSCrossRefGoogle Scholar
  103. Levison, H. F., Thommes, E., Duncan, M. J., Dones, L. 2004. A fairy tale about the formation of Uranus and Neptune and the lunar Late Heavy Bombardment. In Debris Disks and the Formation of Planets (L. Caroff, L. J. Moon, D. Backman, and E. Praton, Eds.), ASP Conference Series 324, pp. 152–167. San Francisco, Astronomical Society of the Pacific.Google Scholar
  104. Lissauer, J. J. 1985. Can cometary bombardment disrupt synchronous rotation of planetary satellites? J. Geophys. Res. 90, 11289–11293.ADSCrossRefGoogle Scholar
  105. Lissauer, J. J., Squyres, S. W., Hartmann, W. K. 1988. Bombardment history of the Saturn system. J. Geophys. Res. 93, 13776–13804.ADSCrossRefGoogle Scholar
  106. Lorenz, R.D. 1997. Impacts and cratering on Titan: A pre-Cassini view. Planet. Space Sci. 45, 1009–1019.ADSCrossRefGoogle Scholar
  107. Lorenz, R. D., and 11 colleagues 2007. Titan's young surface: Initial impact crater survey by Cassini RADAR and model comparison. Geophys. Res. Lett. 34, L07204.CrossRefGoogle Scholar
  108. Lykawka, P. S., Horner, J. A., Jones, B. W., Mukai, T. 2009. Origin and dynamical evolution of Neptune Trojans — I: Formation and planetary migration. Submitted to Mon. Not. R. Astron. Soc.Google Scholar
  109. Malhotra, R., 1993. The origin of Pluto's peculiar orbit. Nature 365, 819–821.ADSCrossRefGoogle Scholar
  110. Marchi, S., Mottola, S., Cremonese, G., Massironi, M., Martellato, E. 2009. A new chronology for the Moon and Mercury. Astron. J. 137, 4936–4948.ADSCrossRefGoogle Scholar
  111. Mazeeva, O. A. 2007. Long-period comet flux in the planetary region: Dynamical evolution from the Oort cloud. Solar System Research 41, 118–128.ADSCrossRefGoogle Scholar
  112. McEwen, A. S., Bierhaus, E. B. 2006. The importance of secondary cratering to age constraints on planetary surfaces. Ann. Rev. Earth Planet. Sci. 34, 535–567.ADSCrossRefGoogle Scholar
  113. McKinnon, W. B. 1990. Planetary evolution: The Hyperion hypothesis. Nature 346, 414–415.ADSCrossRefGoogle Scholar
  114. McKinnon, W. B. 2007. The mechanics of complex crater and ringed basin formation: Constraints from 30 years of planetary observations. Bridging the Gap II: Effect of Target Properties on the Impact Cratering Process, LPI Contrib. 1360, abstract #8072.Google Scholar
  115. McKinnon, W. B., Chapman, C. R., Housen, K. R. 1991. Cratering of the Uranian satellites. In Uranus (J.T. Bergstralh, E. D. Miner, and M. S. Matthews, Eds.), pp. 629–692. Univ. Arizona Press, Tucson.Google Scholar
  116. McKinnon, W. B., Schenk, P. M., Stern, S. A. 2000. New constraints on the small Kuiper Belt object population from high-resolution images of Triton. The Transneptunian Population, IAU 24, Joint Discussion 4, Manchester, England.Google Scholar
  117. Melosh, H. J. 1989. Impact Cratering: A Geologic Process. Oxford University Press (Oxford Monographs on Geology and Geophysics, No. 11), 1989, 253 pp.Google Scholar
  118. Melosh, H. J., Beyer, R. A. 2009. Web page at Accessed April 25, 2009.
  119. Melosh, H. J., Ryan, E. V. 1997. Asteroids: Shattered but not dispersed. Icarus 129, 562–564.ADSCrossRefGoogle Scholar
  120. Morbidelli, A., Levison, H. F., Gomes, R. 2008. The dynamical structure of the Kuiper belt and its primordial origin. In The Solar System Beyond Neptune (M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli, Eds.), pp. 275–292. Univ. Arizona Press, Tucson.Google Scholar
  121. Morbidelli, A., Levison, H. F., Tsiganis, K., Gomes, R. 2005. Chaotic capture of Jupiter's Trojan asteroids in the early Solar System. Nature 435, 462–465.ADSCrossRefGoogle Scholar
  122. Morbidelli, A., Levison, H. F., Bottke, W. F., Dones, L., Nesvorný, D. 2009. Considerations on the magnitude distributions of the Kuiper Belt and of the Jupiter Trojans. Icarus 202, 310–315.ADSCrossRefGoogle Scholar
  123. Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., Gomes, R. 2007. Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798.ADSCrossRefGoogle Scholar
  124. Murray, N., Hansen, B., Holman, M., Tremaine, S. 1998. Migrating planets. Science 279, 69–72.ADSCrossRefGoogle Scholar
  125. Nesvorný, D., Alvarellos, J. L. A., Dones, L., Levison, H. F. 2003. Orbital and collisional evolution of the irregular satellites. Astron. J. 126, 398–429.ADSCrossRefGoogle Scholar
  126. Nesvorný, D., Bottke, W.F., Levison, H., Dones, L., 2002. A recent asteroid breakup in the main belt. Nature 417, 720–722.ADSCrossRefGoogle Scholar
  127. Nesvorný, D., Vokrouhlický, D., Morbidelli, A. 2007. Capture of irregular satellites during planetary encounters. Astron. J. 133, 1962–1976.ADSCrossRefGoogle Scholar
  128. Neukum G. 1983. Meteoritenbombardement und Datierung planetarer Oberflächen. Habilitation Dissertation, Ludwig-Maximilians Univ. München, Germany, 186 pp.Google Scholar
  129. Neukum, G., Hiller, K. 1981. Martian ages. J. Geophys. Res. 86, 3097–3121.ADSCrossRefGoogle Scholar
  130. Neukum, G., Ivanov, B. A., Hartmann, W. K. 2001. Cratering records in the inner Solar System in relation to the lunar reference system. Space Sci. Rev. 96, 55–86.ADSCrossRefGoogle Scholar
  131. Neukum, G., Wagner, R. J., Denk, T., Porco, C. C., the Cassini ISS Team 2005. The cratering record of the saturnian satellites Phoebe, Tethys, Dione and Iapetus in comparison: First results from analysis of the Cassini ISS imaging data. Lunar and Planetary Institute Conference Abstracts 36, abstract #2034.Google Scholar
  132. Neukum, G., Wagner, R., Wolf, U., Denk, T. 2006. The cratering record and cratering chronologies of the Saturnian satellites and the origin of impactors: results from Cassini ISS data. Euro. Planet. Sci. Conf., 610.Google Scholar
  133. Neukum, G., Wagner, R., Wolf, U., Ivanov, B. A., Head, J. W. III, Pappalardo, R. T., Klemaszewski, J. E., Greeley, R., Belton, M. J. S., Galileo SSI Team 1998. Cratering chronology in the jovian system and derivation of absolute ages. Lunar and Planetary Institute Conference Abstracts 29, abstract #1742.Google Scholar
  134. Neukum, G., Wagner, R., Wolf, U., the Galileo SSI Team 1999. Cra-tering record of Europa and implications for time-scale and crustal development. Lunar and Planetary Institute Conference Abstracts 30, abstract #1992.Google Scholar
  135. Nicholson, P. D., Ćuk, M., Sheppard, S. S., Nesvorný, D., Johnson, T. V. 2008. Irregular satellites of the giant planets. In The Solar System Beyond Neptune (M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli, Eds.), pp. 411–424. Univ. Arizona Press, Tucson.Google Scholar
  136. Nimmo, F., Matsuyama, I. 2007. Reorientation of icy satellites by impact basins. Geophysical Research Letters 34, L19203.ADSCrossRefGoogle Scholar
  137. Nimmo, F., Pappalardo, R.T., 2006. Diapir-induced reorientation of Saturn's moon Enceladus. Nature 441, 614–616.ADSCrossRefGoogle Scholar
  138. O'Brien, D. P., Morbidelli, A., Levison, H. F. 2006. Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58.ADSCrossRefGoogle Scholar
  139. Ostro, S. J., Pettengill, G. H. 1978. Icy craters on the Galilean satellites. Icarus 34, 268–279.ADSCrossRefGoogle Scholar
  140. Parker, A., Ivezić, Ž., Jurić, M., Lupton, R., Sekora, M. D., Kowalski, A. 2008. The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus 198, 138–155.ADSCrossRefGoogle Scholar
  141. Petit, J-M., Kavelaars, J. J., Gladman, B., Loredo, T. 2008. Structure and evolution of Kuiper Belt Objects and dwarf planets. In The Solar System Beyond Neptune (M.A. Barucci, H. Boehnhardt, D. Cruikshank, and A. Morbidelli, Eds.), pp. 71–87. Univ. Arizona Press, Tucson.Google Scholar
  142. Plescia, J. B., Boyce, J. M. 1985. Impact cratering history of the Satur-nian satellites. J. Geophys. Res. 90, 2029–2037.ADSCrossRefGoogle Scholar
  143. Porco, C. C., and 34 colleagues 2005. Cassini Imaging Science: Initial results on Phoebe and Iapetus. Science 307, 1237–1242.ADSCrossRefGoogle Scholar
  144. Porco, C. C., and 24 colleagues 2006. Cassini observes the active South Pole of Enceladus. Science 311, 1393–1401.ADSCrossRefGoogle Scholar
  145. Ragozzine, D., Brown, M. E. 2007. Candidate members and age estimate of the family of Kuiper Belt object 2003 EL61. Astron. J. 134, 2160–2167.ADSCrossRefGoogle Scholar
  146. Richardson, J. E. 2008. Interpreting cratered terrains: A new model investigation of crater saturation conditions. AAS/Division for Planetary Sciences Meeting Abstracts 40, #09.05.Google Scholar
  147. Richardson, J. E., Thomas, P. C. 2007. Modeling the cratering records of Hyperion and Phoebe: Indications of a shallow-sloped impactor population. Bull. Amer. Astron. Soc. 38, 430.ADSGoogle Scholar
  148. Robbins, S.J., Stewart, G.R., Lewis, M.C., Colwell, J.E., Sremčević, M. 2009. Estimating the masses of Saturn's A and B Rings from high-optical depth N-Body simulations and stellar occultations. Icarus, in press.Google Scholar
  149. Roig, F., Ribeiro, A. O., Gil-Hutton, R. 2008. Taxonomy of asteroid families among the Jupiter Trojans: Comparison between spectro-scopic data and the Sloan Digital Sky Survey colors. Astron. Astro-phys. 483, 911–931.ADSGoogle Scholar
  150. Schenk, P. M., 1989. Crater formation and modification on the icy satellites of Uranus and Saturn: Depth/diameter and central peak occurrence. J. Geophys. Res. 94, 3813–3832.ADSCrossRefGoogle Scholar
  151. Schenk, P. M., Chapman, C. R., Zahnle, K., Moore, J. M. 2004. Ages and interiors: The cratering record of the Galilean satellites. In Jupiter. The Planet, Satellites and Magnetosphere (Fran Bagenal, Timothy E. Dowling, William B. McKinnon, Eds.), pp. 427–456. Cambridge Univ. Press, Cambridge, UK.Google Scholar
  152. Schenk, P. M., McKinnon, W. B. 2008. A gallery of multiring basins on Europa, Ganymede, and Callisto. Large Meteorite Impacts and Planetary Evolution IV, LPI Contrib. 1423, abstract #3107.Google Scholar
  153. Schenk, P. M., Moore, J. M. 2007. Impact crater topography and morphology on saturnian mid-sized satellites. Lunar and Planetary Institute Conference Abstracts 38, abstract #2305.Google Scholar
  154. Schenk, P. M., Sobieszczyk, S. 1999. Cratering asymmetries on Ganymede and Triton: From the sublime to the ridiculous. Bull. Amer. Astron. Soc. 31, 1182.ADSGoogle Scholar
  155. Schenk, P. M., Zahnle, K. J. 2007. On the negligible surface age of Triton. Icarus 192, 135–149.ADSCrossRefGoogle Scholar
  156. Schmedemann, N., Neukum, G., Denk, T., Wagner, R. 2009. Impact crater size-frequency distribution (SFD) on Saturnian satellites and comparison with other Solar-System bodies. Lunar and Planetary Institute Science Conference Abstracts 40, abstract #1941.Google Scholar
  157. Schmedemann, N., Neukum, G., Denk, T., Wagner, R., Hartmann, O., Michael, G. 2008. Comparison of the production size-frequency distribution (SFD) of craters on saturnian satellites with the lunar crater SFD and asteroid diameter SFD. AAS/Division for Planetary Sciences Meeting Abstracts 40, abstract #61.09.Google Scholar
  158. Schmidt, R.M., Housen, K.R., 1987. Some recent advances in the scaling of impact and explosive cratering. Int. J. Impact Eng. 5, 543–560.ADSCrossRefGoogle Scholar
  159. Schultz, P.H., Merrill, R. B., Eds., 1981. Multi-ring Basins, Proc. Lunar Planet. Sci. 12A. Pergamon Press, New York.Google Scholar
  160. Sheppard, S. S., Trujillo, C. A. 2006. A thick cloud of Neptune Trojans and their colors. Science 313, 511–514.ADSCrossRefGoogle Scholar
  161. Shoemaker, E. M., Hackman, R. J., Eggleton, R. E. 1963. Interplanetary correlation of geologic time. Adv. Astronaut. Sci. 88, 70–89.Google Scholar
  162. Shoemaker, E. M., Shoemaker, C. S., Wolfe, R. F. 1989. Trojan asteroids — Populations, dynamical structure and origin of the L4 and L5 swarms. In Asteroids II (R. P. Binzel, T. Gehrels, and M. S. Matthews, Eds.), pp. 487–523. Univ. Arizona Press, Tucson.Google Scholar
  163. Shoemaker, E. M., Wolfe, R. F. 1981. Evolution of the saturnian satellites: The role of impact. Lunar Planet Sci. XII, A1–A3. LPI Contribution 428, Houston, Texas.Google Scholar
  164. Shoemaker, E. M., Wolfe, R. F. 1982. Cratering time scales for the galilean satellites. In Satellites of Jupiter (Ed. D. Morrison, Ed.), pp. 277–339. Univ. Arizona Press, Tucson.Google Scholar
  165. Smith, B. A., and 26 colleagues 1981. Encounter with Saturn — Voyager 1 imaging science results. Science 212, 163–191.ADSCrossRefGoogle Scholar
  166. Smith, B. A., and 28 colleagues 1982. A new look at the Saturn system — The Voyager 2 images. Science 215, 504–537.ADSCrossRefGoogle Scholar
  167. Smith, B. A., and many colleagues 1986. Voyager 2 in the Uranian system: Imaging science results. Science 233, 43–64.ADSCrossRefGoogle Scholar
  168. Smith, B. A., and many colleagues 1989. Voyager 2 in the Neptunian system: Imaging science results. Science 246, 1422–1449.ADSCrossRefGoogle Scholar
  169. Smith, D. E., Bray, V. J., Turtle, E. P., Melosh, H. J., Perry, J. E. 2007. Studies of viscous relaxation of craters on Enceladus. LPI Contribution 1357, 127–128.ADSGoogle Scholar
  170. Sosa, A., Fernández, J. A. 2009. Cometary masses derived from non-gravitational forces. Mon. Not. R. Astron. Soc. 393, 192–214.ADSCrossRefGoogle Scholar
  171. Stern, S. A., McKinnon, W. B. 2000. Triton's surface age and impactor population revisited in light of Kuiper Belt fluxes: Evidence for small Kuiper Belt Objects and recent geological activity. Astron. J. 119, 945–952.ADSCrossRefGoogle Scholar
  172. Strom, R. G. 1981. Crater populations on Mimas, Dione and Rhea. Lunar Planet Sci. XII, A7–A9. LPI Contribution 428, Houston, Texas.Google Scholar
  173. Strom, R. G. 1987. The Solar System cratering record: Voyager 2 results at Uranus and implications for the origin of impacting objects. Icarus 70, 517–535.ADSCrossRefGoogle Scholar
  174. Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., Kring, D. A. 2005. The origin of planetary impactors in the inner Solar System. Science 309, 1847–1850.ADSCrossRefGoogle Scholar
  175. Sussman, G. J., Wisdom, J. 1992. Chaotic evolution of the Solar System. Science 257, 56–62.MathSciNetADSCrossRefGoogle Scholar
  176. Szabó, Gy. M., Ivezić, Ž., Jurić, M., Lupton, R. 2007. The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalogue 3. Mon. Not. R. Astron. Soc. 377, 1393–1406.ADSCrossRefGoogle Scholar
  177. Thomas, P. C., and 17 colleagues 2007a. Hyperion's sponge-like appearance. Nature 448, 50–56.ADSCrossRefGoogle Scholar
  178. Thomas, P. C., Burns, J. A., Helfenstein, P., Squyres, S., Veverka, J., Porco, C., Turtle, E. P., McEwen, A., Denk, T., Giese, B., Roatsch, T., Johnson, T. V., Jacobson, R. A. 2007b. Shapes of the saturnian icy satellites and their significance. Icarus 190, 573–584.ADSCrossRefGoogle Scholar
  179. Thommes, E. W., Bryden, G., Wu, Y., Rasio, F. A. 2008. From mean motion resonances to scattered planets: Producing the Solar System, eccentric exoplanets, and late heavy bombardments. Astrophys. J. 675, 1538–1548.ADSCrossRefGoogle Scholar
  180. Thommes, E. W., Duncan, M. J., Levison, H. F. 1999. The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System. Nature 402, 635–638.ADSCrossRefGoogle Scholar
  181. Thommes, E. W., Duncan, M. J., Levison, H. F. 2002. The formation of Uranus and Neptune among Jupiter and Saturn. Astron. J. 123, 2862–2883.ADSCrossRefGoogle Scholar
  182. Tiscareno, M. S., Malhotra, R. 2003. The dynamics of known Centaurs. Astron. J. 126, 3122–3131.ADSCrossRefGoogle Scholar
  183. Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H. F. 2005. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461.ADSCrossRefGoogle Scholar
  184. Turrini, D., Marzari, F., Beust, H. 2008. A new perspective on the irregular satellites of Saturn — I. Dynamical and collisional history. Mon. Not. R. Astron. Soc. 391, 1029–1051.ADSCrossRefGoogle Scholar
  185. Turrini, D., Marzari, F., Tosi, F. 2009. A new perspective on the irregular satellites of Saturn – II. Dynamical and physical origin. Mon. Not. R. Astron. Soc. 392, 455–474.ADSCrossRefGoogle Scholar
  186. USGS Astrogeology Gazetteer of Planetary Nomenclature 2009. Web page at Accessed April 25, 2009.
  187. Vokrouhlický, D., Nesvorný, D., Levison, H. F. 2008. Irregular satellite capture by exchange reactions. Astron. J. 136, 1463– 1476.ADSCrossRefGoogle Scholar
  188. Volk, K., Malhotra, R. 2008. The Scattered Disk as the source of the Jupiter family comets. Astrophys. J. 687, 714– 725.ADSCrossRefGoogle Scholar
  189. Weissman, P. R., Levison, H. 1997. The population of the trans-Neptunian region: The Pluto-Charon environment. In Pluto and Charon (S. A. Stern and D. J. Tholen, Eds.), pp. 559–604. Univ. Arizona Press, Tucson.Google Scholar
  190. West, R. M., Hainaut, O., Smette, A. 1991. Post-perihelion observations of P/Halley. III — an outburst at R = 14.3 AU. Astron. Astrophys. 246, L77–L80.ADSGoogle Scholar
  191. Wetherill, G. W. 1975. Late heavy bombardment of the moon and terrestrial planets. Lunar and Planetary Science Conference 6, 1539–1561.ADSGoogle Scholar
  192. Wetherill, G.W. 1981. Nature and origin of basin-forming projectiles. In Multi-ring Basins, Proc. Lunar Planet. Sci. 12A (P. H. Schultz and R. B. Merrill, Eds.), 1–18.Google Scholar
  193. Wood, C. A., Lunine, J. I., Stofan, E. R., Lorenz, R. D., Lopes, R. M. C., Radebaugh, J., Wall, S. D., Paillou, P., Farr, T. 2008. Degraded impact craters on Titan. Lunar Planet. Sci. Conf. 39, abstract #1990.Google Scholar
  194. Wünnemann K., Collins, G. S., Elbeshausen D. 2008. Limitations of point-source analogy for meteorite impact and implications to crater-scaling. Large Meteorite Impacts and Planetary Evolution IV, LPI Contrib. 1423, abstract #3076.Google Scholar
  195. Wünnemann K., Collins, G. S., Melosh, H. J. 2006. A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growthin porous targets. Icarus 180, 514–527.ADSCrossRefGoogle Scholar
  196. Zahnle, K. J., Alvarellos, J. L., Dobrovolskis, A. R., and Hamill, P. 2008. Secondary and sesquinary impact craters on Europa. Icarus 194, 660–674.ADSCrossRefGoogle Scholar
  197. Zahnle, K., Dones, L., Levison, H. F. 1998. Cratering rates on the galilean satellites. Icarus 136, 202–222.ADSCrossRefGoogle Scholar
  198. Zahnle, K., Schenk, P., Levison, H., Dones, L. 2003. Cratering rates in the outer Solar System. Icarus 163, 263–289.ADSCrossRefGoogle Scholar
  199. Zahnle, K., Schenk, P., Sobieszczyk, S., Dones, L., Levison, H. F. 2001. Differential cratering of synchronously rotating satellites by ecliptic comets. Icarus 153, 111–129.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Luke Dones
    • 1
  • Clark R. Chapman
    • 1
  • William B. McKinnon
    • 2
  • H. Jay Melosh
    • 3
    • 4
  • Michelle R. Kirchoff
    • 5
    • 6
  • Gerhard Neukum
    • 7
  • Kevin J. Zahnle
    • 8
  1. 1.Southwest Research InstituteBoulderUSA
  2. 2.Washington University in Saint LouisSt. LouisUSA
  3. 3.University of ArizonaTucsonUSA
  4. 4.Now at Purdue UniversityWest Lafayette
  5. 5.Lunar and Planetary InstituteHoustonUSA
  6. 6.Now at Southwest Research InstituteBoulderUSA
  7. 7.Freie UniversitätBerlinGermany
  8. 8.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations