Advertisement

The Thermal Evolution and Internal Structure of Saturn's Mid-Sized Icy Satellites

  • Dennis L. Matson
  • Julie C. Castillo-Rogez
  • Gerald Schubert
  • Christophe Sotin
  • William B. McKinnon

Abstract

The Cassini-Huygens mission is returning new geophysical data for the midsize, icy satellites of Saturn (i.e., satellites with radii between 100 and 1,000 km). These data have enabled a new generation of geophysical model studies for Phoebe, Iapetus, Rhea, Mimas, Tethys, Dione, as well as Enceladus (which is addressed in a separate chapter in this book). In the present chapter we consider the new model studies that have reported significant results elucidating the evolutionary histories and internal structures of these satellites. Those results have included their age, the development of their internal structures and mineralogies, which for greatest fidelity must be done concomitantly with coupled dynamical evolutions. Surface areas, volumes, bulk densities, spin rates, orbit inclinations, eccentricities, and distance from Saturn have changed as the satellites have aged. Heat is required to power the satellites' evolution, but is not overly abundant for the midsized satellites. All sources of heat must be evaluated and taken into account. This includes their intensities and when they occur and are available to facilitate evolution, both internal and dynamical. The mechanisms of heat transport must also be included. However, to model these to high fidelity the material properties of the satellite interiors must be accurately known. This is not the case. Thus, much of the chapter is devoted to discussion of what is known about these properties and how the uncertainties affect the estimation of heat sources, transport processes, and the consequential changes in composition and evolution. Phoebe has an oblate shape that may be in equilibrium with its spin period of ~9.3 h. Its orbital properties suggest that it is not one of the regular satellites, but is a captured body. Its density is higher than that of the other satellites, consistent with formation in the solar nebula rather than from material around Saturn. Oblate shape and high density are unusual for objects in this size range, and may indicate that Phoebe was heated by 26Al decay soon after its formation, which is consistent with some models of the origin of Kuiper-Belt objects. Iapetus has the shape of a hydrostatic body with a rotation period of 16 h. It subsequently despun to its current synchronous rotation state, ~79 day period. These observations are sufficient to constrain the required heating in Iapetus' early history, suggesting that it formed several My after CAI condensation. Since Saturn had to be present for Iapetus to form, this date also constrains the age of Saturn and how long it took to form. Both shape and gravitational data are available for Rhea. Gravity data were obtained from the single Cassini flyby during the prime mission and within the uncertainties cannot distinguish between hydrostatic and non-hydrostatic gravitational fields. Both Dione and Tethys display evidence of smooth terrains, with Dione's appearing considerably younger. Both are conceivably linked to tidal heating in the past, but the low rock abundance within Tethys and the lack of eccentricity excitation of Tethys' orbit today make explaining this satellite's geology challenging.

Keywords

Rayleigh Number Thermal Boundary Layer Giant Planet Hydrostatic Equilibrium Solar Nebula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, Under a contract with the National Aeronautics and Space Administration. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged. W.B.M. thanks the Cassini Data Analysis Program.

References

  1. Alibert, Y., Mousis, O., 2007. Formation of Titan in Saturn's subnebula: Constraints from Huygens probe measurements. Astronomy and Astrophysics. 465, 1051–1060.ADSCrossRefGoogle Scholar
  2. Amelin, Y, Krot, A. N., Hutcheon, I. D., Ulyanov, A. A., 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science. 297, 1678–1683.ADSCrossRefGoogle Scholar
  3. Anderson, J. D., Johnson, T V., Schubert, G., Asmar, S., Jacobson, R. A., Johnston, D., Lau, E. L., Lewis, G., Moore, W. B., Taylor, A., Thomas, P. C, Weinwurm, G., 2005. Amalthea's density is less than that of water. Science. 308, 1291–1293.ADSCrossRefGoogle Scholar
  4. Anderson, J. D., Schubert, G., 2007. Saturn's satellite Rhea is a homogeneous mix of rock and ice. Geophysical Research Letters. 34, L02202–L02202.CrossRefGoogle Scholar
  5. Anderson, J. D., Schubert, G., 2009. Rhea's gravitational field and interior structure inferred from archival data files of the 2005 Cassini Flyby. Physics of the Earth and Planetary Interiors. submitted.Google Scholar
  6. Atreya, S. K., Adams, E. Y, Niemann, H. B., Demick-Montelara, J. E., Owen, T. C, Fulchignoni, M., Ferri, F, Wilson, E. H., 2006. Titan's methane cycle. Planetary and Space Science. 54, 1177–87.ADSCrossRefGoogle Scholar
  7. Barr, A. C, Pappalardo, R. T, 2005. Onset of convection in the icy Galilean satellites: Influence of rheology. Journal of Geophysical Research. 110, doi: 10.1029/2004 JE002371.Google Scholar
  8. Barr, A. C, McKinnon, W. B., 2007. Convection in Enceladus' ice shell: Conditions for initiation. Geophysical Research Letters. 34, doi: 10.1029/2006GL028799. L09202.CrossRefGoogle Scholar
  9. Barr, A. C, Canup, R. M., 2008. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus. 198, 163–177.ADSCrossRefGoogle Scholar
  10. Barr, A. C, Pappalardo, R. T.,Zhong, S., 2004. Convective instability in ice I with non-Newtonian rheology: Application to the icy Galilean satellites. Journal of Geophysical Research 109, E12008.ADSCrossRefGoogle Scholar
  11. Blum, J., 1995. Laboratory and space experiments to study pre-planetary growth. Advances in Space Research. 15, 39–54.ADSCrossRefGoogle Scholar
  12. Brown, R. H., Clark, R. N., Buratti, B. J., Cruikshank, D. P., Barnes, J. W., Mastrapa, R. M. E., Bauer, J., Newman, S., Momary, T., Baines, K. H., Bellucci, G., Capaccioni, F., Cerroni, P., Combes, M., Coradini, A., Drossart, P., Formisano, V., Jaumann, R., Langevin, Y., Matson, D. L., McCord, T. B., Nelson, R. M., Nicholson, P. D., Sicardy, B., Sotin, C, 2006. Composition and physical properties of Enceladus' surface. Science. 311, 1425–8.ADSCrossRefGoogle Scholar
  13. Brownlee, D., Tsou, P., Aleon, J., Alexander, C, Araki, T., Bajt, S., Baratta, G. A., Bastien, R., Bland, P., Bleuet, P., 2006. Comet 81P/Wild 2 under a microscope. Science. 314, 1711.ADSCrossRefGoogle Scholar
  14. Buratti, B. J., Hicks, M. D., Soderblom, L. A., Britt, D., Oberst, J., Hillier, J. K., 2004. Deep Space 1 photometry of the nucleus of Comet 19P/Borrelly. Icarus. 167, 16–29.ADSCrossRefGoogle Scholar
  15. Buratti, B. J., Soderlund, K., Bauer, J., Mosher, J. A., Hicks, M. D., Simonelli, D. P., Jaumann, R., Clark, R. N., Brown, R. H., Cruikshank, D. P., Momary, T., 2008. Infrared.0.83–5.1(μm) photometry of Phoebe from the Cassini Visual Infrared Mapping Spectrometer. Icarus. 193, 309–322.ADSCrossRefGoogle Scholar
  16. Burns, J. A., 1976. Consequences of the tidal slowing of Mercury. Icarus. 28, 453–458.ADSCrossRefGoogle Scholar
  17. Burns, J. A., Matthews, M. S. (Eds.), 1986. Satellites. Univ. Arizona Press, Tucson.Google Scholar
  18. Canup, R. M., Ward, W. R., 2006. A common mass scaling for satellite systems of gaseous planets. Nature. 441, 834–839.ADSCrossRefGoogle Scholar
  19. Castillo-Rogez, J., Johnson, T., Lee, M. H., Turner, N. J., Matson, D., Lunine, J., 2009. 26Al Decay: Heat production and a revised age for Iapetus. Icarus. in press.Google Scholar
  20. Castillo-Rogez, J. C, Matson, D. L., Sotin, C, Johnson, T. V., Lunine, J. I., Thomas, P. C, 2007. Iapetus' geophysics: Rotation rate, shape, and equatorial ridge. Icarus. 190, 179–202.ADSCrossRefGoogle Scholar
  21. Chandrasekhar, S., 1969. Ellipsoidal Figures of Equilibrium. Yale Univ. Press, New Haven, CT.MATHGoogle Scholar
  22. Chapman, C. R., McKinnon, W. B., Cratering of planetary satellites. In: J. A. Burns, M. S. Matthews (Eds.), Satellites. Univ. Arizona Press, Tucson, 1986, pp. 492–580.Google Scholar
  23. Charnoz, S., Morbidelli, A., Dones, L., Salmon, J., 2009. Did Saturn's rings form during the Late Heavy Bombardment? Icarus. 199, 413– 428.Google Scholar
  24. Chen, E. M. A., Nimmo, F., 2008. Implications from Ithaca Chasma for the thermal and orbital history of Tethys. Geophysical Research Letters. 35, L19203–L19203.ADSCrossRefGoogle Scholar
  25. Choblet, C, Sotin, C, 2000. 3-D thermal convection with variable viscosity: Can transient cooling be described by a quasi-static scaling law? Physics Of the Earth and Planetary Interiors. 119, 321–336.ADSCrossRefGoogle Scholar
  26. Ciesla, F. J., Lauretta, D. S., Cohen, B. A., Hood, L. L., 2003. A nebular origin for chondritic fine-grained phyllosilicates. Science. 299, 549– 552.ADSCrossRefGoogle Scholar
  27. Clark, R. N., Brown, R. H., Jaumann, R., Cruikshank, D. P., Nelson, R. M., Buratti, B. J., McCord, T. B., Lunine, J., Baines, K. H., Bellucci, G., Bibring, J. P., Capaccioni, F., Cerroni, P., Coradini, A., Formisano, V., Langevin, Y, Matson, D. L., Mennella, V., Nicholson, P. D., Sicardy, B., Sotin, C, Hoefen, T. M., Curchin, J. M., Hansen, G., Hibbits, K., Matz, K. D., 2005. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy. Nature. 435, 66–69.ADSCrossRefGoogle Scholar
  28. Clauser, C, Huenges, E., Thermal conductivity of rock and minerals. Rock Physics and Phase Relations American Geophysical Union, Washington, DC, 1995, pp. 105–125.Google Scholar
  29. Cohen, B. A., Coker, R. F., 2000. Modeling of liquid water on CM meteorite parent bodies and implications for amino acid racemization. Icarus. 145, 369–381.ADSCrossRefGoogle Scholar
  30. Collins, G. C, Goodman, J. C, 2007. Enceladus' south polar sea. Icarus. 189, 72–82.ADSCrossRefGoogle Scholar
  31. Consolmagno, G., Britt, D. T., Stoll, C. P., 1998. The porosities of ordinary chondrites: Models and interpretation. Meteoritics and Planetary Science. 33, 1221–1230.ADSCrossRefGoogle Scholar
  32. Coradini, A., Cerroni, P., Magni, G., Federico, C., 1989. Formation of the satellites of the outer solar system-Sources of their atmospheres. IN: Origin and evolution of planetary and satellite atmospheres (A89–43776 19–90). University of Arizona Press, Tucson, AZ, 1989, pp. 723–762.Google Scholar
  33. Cruikshank, D. P., Owen, T. C., Ore, C. D., Geballe, T. R., Roush, T. L., de Bergh, C., Sandford, S. A., Poulet, F., Benedix, G. K., Emery, J. P., 2005. A spectroscopic study of the surfaces of Saturn's large satellites: H2O ice, tholins, and minor constituents. Icarus. 175, 268–283.ADSCrossRefGoogle Scholar
  34. Cruikshank, D. P., Wegryn, E., Ore, C. M. D., Brown, R. H., Bibring, J. P., Buratti, B. J., Clark, R. N., McCord, T. B., Nicholson, P. D., Pendleton, Y. J., Owen, T. C., Filacchione, G., Coradini, A., Cerroni, P., Capaccioni, F., Jaumann, R., Nelson, R. M., Baines, K. H., Sotin, C., Bellucci, G., Combes, M., Langevin, Y., Sicardy, B., Matson, D. L., Formisano, V., Drossart, P., Mennella, V., 2008. Hydrocarbons on Saturn's satellites Iapetus and Phoebe. Icarus. 193, 334–343.ADSCrossRefGoogle Scholar
  35. Czechowski, L., Leliwa-Kopystynski, J., 2008. The Iapetus's ridge: Possible explanations of its origin. Advances in Space Research. 42, 61–69.ADSCrossRefGoogle Scholar
  36. Davaille, A., Jaupart, C., 1993. Transient high Rayleigh number thermal convection with large viscosity variations. Journal of Fluid Mechanics 253, 141–166.ADSCrossRefGoogle Scholar
  37. Davaille, A., Jaupart, C., 1994. Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. J. Geophys. Res. 99, 19853–19866.ADSCrossRefGoogle Scholar
  38. De La Chapelle, S., Milsch, H., Castelnau, O., Duval, P., 1999. Com-pressive creep of ice containing a liquid intergranular phase: Rate-controlling processes in the dislocation creep regime. Geophysical Research Letters 26, 251–254.ADSCrossRefGoogle Scholar
  39. Denk, T., Neukum, G., Helfenstein, P., Thomas, P. C., Turtle, E. P., McEwen, A. S., Roatsch, T., Veverka, J., Johnson, T. V., Perry, J. E., Owen, W. M., Wagner, R. J., Porco, C. C. 2005. The Cassini ISS Team, 2005. The first six months of Iapetus observations by the Cassini ISS Camera. Lunar and Planetary Science. 36, 2262–2263.MATHADSGoogle Scholar
  40. Dermott, S. F., Murray, C. D., 1982. Asteroid rotation rates depend on diameter and type. Nature. 296, 418–421.ADSCrossRefGoogle Scholar
  41. Deschamps, F., Sotin, C., 2001. Thermal convection in the outer shell of large icy satellites (Paper 2000JE001253). Journal of Geophysical Research-Part E-Planets. 106, 5107–5121.ADSCrossRefGoogle Scholar
  42. Durham, W. B., Heard, H. C., Kirby, S. H., 1983. Rheology of Ice ih at High Pressure and Low Temperature. Lunar and Planetary Science. 14, 169–170.ADSGoogle Scholar
  43. Durham, W. B., Stern, L. A., 2001. Rheological properties of water ice — applications to satellites of the outer planets Annual Review of Earth and Planetary Sciences. 29, 295–330.Google Scholar
  44. Durham, W. B., McKinnon, W. B., Stern, L. A., 2004. Cold compaction of porous ice and the density of Phoebe. EOS Transactions AGU. 85, P43B–07.Google Scholar
  45. Durham, W. B., McKinnon, W. B., Stern, L. A., 2005. Cold compaction of water ice. Geophysical Research Letters 32, 1–5.CrossRefGoogle Scholar
  46. Ellsworth, K., Schubert, G., 1983. Saturns icy satellites — Thermal and structural models. Icarus. 54, 490–510.ADSCrossRefGoogle Scholar
  47. Eluszkiewicz, J., Leliwa-Kopystynski, J., Kossacki, K. J., Metamor-phism of solar system ices. In: B. Schmitt, et al. (Eds.), Solar System Ices. Kluwer, Dordrecht Netherlands. 1998 119–138.Google Scholar
  48. Emery, J. P., Burr, D. M., Cruikshank, D. P., Brown, R. H., Dalton, J. B., 2005. Near-infrared (0.8–4.0 micron) spectroscopy of Mimas, Enceladus, Tethys, and Rhea. Astronomy & Astrophysics. 435, 353–62.ADSCrossRefGoogle Scholar
  49. Friedson, A. J., Stevenson, D. J., 1983. Viscosity of rock-ice mixtures and applications to the evolution of icy satellites. Icarus. 56, 1–14.ADSCrossRefGoogle Scholar
  50. Garaud, P., Lin, D. N. C., 2007. The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars. The Astrophysical Journal. 654, 606–624.ADSCrossRefGoogle Scholar
  51. Gautier, D., Hersant, F., 2005. Formation and composition of planetesi-mals. Space Science Reviews. 116, 25–52.ADSCrossRefGoogle Scholar
  52. Giese, B., Neukum, G., Roatsch, T., Denk, T., Porco, C. C., 2006. Topographic modeling of Phoebe using Cassini images. Planetary and Space Science. 54, 1156–66.ADSCrossRefGoogle Scholar
  53. Giese, B., Wagner, R., Neukum, G., Helfenstein, P., Thomas, P. C., 2007. Tethys: Lithospheric thickness and heat flux from flexurally supported topography at Ithaca Chasma. Geophysical Research Letters. 34, L21203–L21203.ADSCrossRefGoogle Scholar
  54. Giese, B., Denk, T., Neukum, G., Roatsch, T., Helfenstein, P., Thomas, P. C., Turtle, E. P., McEwen, A., Porco, C. C., 2008. The topography of Iapetus' leading side. Icarus. 193, 359–371.ADSCrossRefGoogle Scholar
  55. Giese, B., Denk, T., Neukum, G., Porco, C. C., Roatsch, T., Wagner, R., 2005. The topography of Iapetus' leading side. Bulletin of the American Astronomical Society. 37, 3.Google Scholar
  56. Giggenbach, W. F., 1980. Geothermal gas equilibria. Geochimica et Cosmochimica Acta. 44, 2021–2032.ADSCrossRefGoogle Scholar
  57. Glein, C. R., Zolotov, M. Y., Shock, E. L., 2008. The oxidation state of hydrothermal systems on early Enceladus. Icarus. 197, 157–63.ADSCrossRefGoogle Scholar
  58. Goldreich, P., Soter, S., 1966. Q in the solar system. Icarus. 5, 375–389.ADSCrossRefGoogle Scholar
  59. Gomes, R., Levison, H. F., Tsiganis, K., Morbidelli, A., 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature. 435, 466–469.ADSCrossRefGoogle Scholar
  60. Gounelle, M., Russell, S. S., 2005. On early solar system chronology: Implications of an heterogeneous spatial distribution of$̂{26}$ Al and$̂{53}$ Mn. Geochimica et Cosmochimica Acta. 69, 3129– 3144.ADSCrossRefGoogle Scholar
  61. Grasset, O., Parmentier, E. M., 1998. Thermal convection in a volu-metrically heated, infinite Prandtl number fluid with strongly temperature dependent viscosity: implications for planetary evolution. Journal of Geophysical Research. 103, 18171–18181.ADSCrossRefGoogle Scholar
  62. Grasset, O., Mevel, L., Mousis, O., Sotin, C., 2001. The pressure dependence of the eutectic composition in the system MgSO4-H2O: Implications for the deep liquid layer of icy satellites. Lunar Planetary Science. 32, 1524.pdf.ADSGoogle Scholar
  63. Grimm, R. E., McSween, H. Y., 1989. Water and the thermal evolution of carbonaceous chondrite parent bodies. Meteoritics. 24, 273–274.ADSGoogle Scholar
  64. Hartmann, W. K., 1987. A satellite-asteroid mystery and a possible early flux of scattered C-class asteroids. Icarus. 71, 57–68.ADSCrossRefGoogle Scholar
  65. Hersant, F., Gautier, D., Lunine, J. I., 2004. Enrichment in volatiles in the giant planets of the Solar System. Planetary and Space Science. 52, 623–641.ADSCrossRefGoogle Scholar
  66. Hersant, F., Gautier, D., Tobie, G., Lunine, J. I., 2008. Interpretation of the carbon abundance in Saturn measured by Cassini. Planetary and Space Science. 56, 1103–1111.ADSCrossRefGoogle Scholar
  67. Hofmeister, A. M., 1999. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science. 283, 1699–1706.ADSCrossRefGoogle Scholar
  68. Iess, L., Rappaport, N. J., Tortora, P., Lunine, J., Armstrong, J. W., As-mar, S. W., Somenzi, L., Zingoni, F., 2007. Gravity field and interior of Rhea from Cassini data analysis. Icarus. 190, 585–593.ADSCrossRefGoogle Scholar
  69. Ip, W. H., 2006. On a ring origin of the equatorial ridge of Iapetus. Geophysical Research Letters. 33, 16203.ADSCrossRefGoogle Scholar
  70. Johnson, T. J., Introduction to icy satellite geology. In: B. Schmitt, et al. (Eds.), Solar System Ices. Kluwer, Dordrecht, Netherlands, 1998, pp. 511–524.Google Scholar
  71. Johnson, T. V., Lunine, J. I., 2005. Saturn's moon Phoebe as a captured body from the outer Solar System. Nature. 435, 69–71.ADSCrossRefGoogle Scholar
  72. Johnson, T. V., Castillo-Rogez, J. C., Matson, D. L., Thomas, P. C., 2009. Phobe's Shape: Possible constraints on internal structure and origin. Lunar Planetary Science. 40, 2334.pdf.ADSGoogle Scholar
  73. Johnson, T. V., Lunine, J., 2005. Saturn satellite densities and the C/O chemistry of the solar nebula. Lunar Planetary and Science 36, 1410–1411.ADSGoogle Scholar
  74. Kargel, J. S., 1991. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus. 94, 368–390.ADSCrossRefGoogle Scholar
  75. Kargel, J. S., 1992. Ammonia-water volcanism on icy satellites: Phase relationships at one atmosphere. Icarus. 100, 556–574.ADSCrossRefGoogle Scholar
  76. Kargel, J. S., Kaye, J. Z., Head, J. W., Marion, G. M., Sassen, R., Crowley, J. K., Ballesteros, O. P., Grant, S. A., Hogenboom, D. L., 2000. Europa's crust and ocean: Origin, composition, and the prospects for life. Icarus. 148, 226–265.ADSCrossRefGoogle Scholar
  77. Kelley, K. A., Plank, T., Farr, L., Ludden, J., Staudigel, H., 2005. Sub-duction cycling of U, Th, and Pb. Earth and Planetary Science Letters. 234, 369–383.ADSCrossRefGoogle Scholar
  78. Khurana, K. K., Burger, M. H., Leisner, J. S., Dougherty, M. K., Russell, C. T., 2007. Does Dione have a tenuous atmosphere? Eos Transactions AGU. 88, P43A–03.Google Scholar
  79. Khurana, K. K., Russell, C. T., Dougherty, M. K., 2008. Magnetic portraits of Tethys and Rhea. Icarus. 193, 465–474.ADSCrossRefGoogle Scholar
  80. Kirk, R. L., Stevenson, D. J., 1987. Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus. 69, 91–134.ADSCrossRefGoogle Scholar
  81. Kita, N. T, Huss, G. R., Tachibana, S., Amelin, Y., Nyquist, L. E., Hutcheon, I. D., Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In: A. N. Krot, et al. (Eds.), Chondrites and the Protoplanetary Disk, Vol. 341. Astronomical Society of the Pacific, Kaua'i, Hawaii, 2005, pp. 558.Google Scholar
  82. Korenaga, J., Jordan, T. H., 2003. Onset of convection with temperature-and depth-dependent viscosity. Geophysical Research Letters. 29, 29.Google Scholar
  83. Kossacki, K. J., Leliwa-Kopystynski, J., 1993. Medium-sized icy satellites: Thermal and structural evolution during Accretion. Planetary and Space Science. 41, 729–741.ADSCrossRefGoogle Scholar
  84. Kuskov, O. L., Kronrod, V. A., 2001. Core sizes and internal structure of Earth's and Jupiter's satellites. Icarus. 151, 204–227.ADSCrossRefGoogle Scholar
  85. Langseth, M. G., Keihm, S., Peters, K., 1976. The revised lunar heat flow values. Lunar and Planetary Science 7, 3143.ADSGoogle Scholar
  86. Lanzerotti, L. J., Brown, W. L., Marcantonio, K. J., Johnson, R. E., 1984. Production of ammonia-depleted surface layers on the Sat-urnian satellites by ion sputtering. Nature. 312, 139.ADSCrossRefGoogle Scholar
  87. Leliwa-Kopystynski, J., Maeno, N., 1993. Ice/rock porous mixtures: compaction experiments and interpretation. Journal of Glaciology. 39, 643–655.ADSGoogle Scholar
  88. Leliwa-Kopystynski, J., Kossacki, K. J., 1994. Evolution of small icy satellites — the role of ammonia admixture. Bulletin of the American Astronomical Society 26, 1160.ADSGoogle Scholar
  89. Leliwa-Kopystynski, J., Kossacki, K. J., 1995. Kinetics of compaction of granular ices H2O; CO2 and NH3 × H2O1-x at pressures of 2-20 MPa and in temperatures of 100–270 K. Application to the physics of the icy satellites. Planetary and Space Science. 43, 851–861.ADSCrossRefGoogle Scholar
  90. Leliwa-Kopystynski, J., Kossacki, K. J., 2000. Evolution of porosity in small icy bodies. Planetary and Space Science. 48, 727–745.ADSCrossRefGoogle Scholar
  91. Lissauer, J. J., Hubickyj, O., D'Angelo, G., Bodenheimer, P., 2009. Models of Jupiter's growth incorporating thermal and hydrodynamic constraints. Icarus. 199, 338–350.ADSCrossRefGoogle Scholar
  92. Lorenz, R. D., Shandera, S. E., 2001. Physical properties of ammonia-rich ice: Application to Titan. Geophysical Research Letters. 28, 215–218.ADSCrossRefGoogle Scholar
  93. Lunine, J. I., Stevenson, D. J., 1982. Formation of the Galilean satellites in a gaseous nebula. Icarus. 52, 14–39.ADSCrossRefGoogle Scholar
  94. Mackenzie, R. A., Iess, L., Tortora, P., Rappaport, N. J., 2008. A non-hydrostatic Rhea. Geophysical Research Letters. 35, L05204– L05204.CrossRefGoogle Scholar
  95. Matson, D. L., Brown, R. H., 1989. Solid-state greenhouses and their implications for icy satellites. Icarus. 77, 67–81.ADSCrossRefGoogle Scholar
  96. Matson, D. L., Castillo, J. C, Lunine, J., Johnson, T. V., 2007. Ence-ladus' plume: Compositional evidence for a hot interior. Icarus. 187, 569–573.ADSCrossRefGoogle Scholar
  97. McCarthy, C, Cooper, R. F., Kirby, S. H., Durham, W. B., 2006. Ice/hydrate eutectics: The implications of microstructure and rhe-ology on a multiphase Europan Crust. Lunar and Planetary Science. 37, 2467.ADSGoogle Scholar
  98. McCord, T. B., Sotin, C, 2005. Ceres: Evolution and current state. Journal of Geophysical Research. 110, E05009.CrossRefGoogle Scholar
  99. McKinnon, W., Geodynamics of icy satellites. In: B. Schmitt, et al. (Eds.), Solar System Ices. Kluwer, Dordrecht, Netherlands, 1998, pp. 525–550.Google Scholar
  100. McKinnon, W. B., On the initial thermal evolution of Kuiper Belt objects. In: B. Warmbein (Ed.), Asteroids, Comets, Meteors — ACM 2002, Vol. ESA SP-500. ESA Publications Division, Noordwijk, the Netherlands, Berlin, Germany 29 July-2 August 2002, 2002, pp 29–38.Google Scholar
  101. McKinnon, W. B., Zolensky, M. E., 2003. Sulfate content of Europa's ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology. 3, 879–897.ADSCrossRefGoogle Scholar
  102. McKinnon, W. B., 2006. On convective instability in the ice I shells of outer solar system bodies, with detailed application to Callisto. Icarus. 183, 435–450.ADSCrossRefGoogle Scholar
  103. McKinnon, W. B., Barr, A. C, The Mimas Paradox revisited plus crustal spreading on Enceladus?, Workshop on Ices, Oceans, and Fire: Satellites of the Outer Solar System, Vol. 1357. Lunar and Planetary Institute, Boulder, Colorado, 2007, pp. id.6083.Google Scholar
  104. McKinnon, W. B., Could Ceres be a Refugee from the Kuiper Belt?, Asteroids, Comets, Meteors 2008 LPI Contribution, Vol. LPI Contribution No. 1405, paper id. 8389. Lunar and Planetary Institute, Baltimore, Maryland, 2008.Google Scholar
  105. McKinnon, W. B., Prialnik, D., Stern, S. A., Coradini, A., Structure and evolution of Kuiper belt objects and dwarf planets. In: M. A. Barucci, et al. (Eds.), The Solar System Beyond Neptune. University of Arizona Press, Tucson, 2008, pp. 213–241.Google Scholar
  106. Melosh, H. J., Nimmo, F., 2009. An intrusive dike origin for Iapetus' enigmatic ridge? Lunar and Planetary Science. 40, #2478.Google Scholar
  107. Moore, J. M., Schenk, P. M., Bruesch, L. S., Asphaug, E., McKinnon, W. B., 2004. Large impact features on middle-sized icy satellites. Icarus. 171,421–43.ADSCrossRefGoogle Scholar
  108. Moresi, L. N., Solomatov, V S., 1995. Numerical investigation of 2D convection with extremely large viscosity variations. Physics of Fluids. 7, 2154–2162.MATHADSCrossRefGoogle Scholar
  109. Mosqueira, I., Estrada, P. R., 2005. On the origin of the saturnian satellite system: Did Iapetus form in-situ? Lunar and Planetary Science. 36, 1951–1952.Google Scholar
  110. Mostefaoui, S., Lugmair, G. W., Hoppe, P., 2005. 60Fe: A heat source for planetary differentiation from a nearby supernova explosion. The Astrophysical Journal. 625, 271–277.ADSCrossRefGoogle Scholar
  111. Mousis, O., Gautier, D., Bockelee-Morvan, D., 2002. An evolutionary turbulent model of Saturn's subnebula: Implications for the origin of the atmosphere of Titan. Icarus. 156, 162–175.ADSCrossRefGoogle Scholar
  112. Multhaup, K., Spohn, T., 2007. Stagnant lid convection in the mid-sized icy satellites of Saturn. Icarus. 186, 420–435.ADSCrossRefGoogle Scholar
  113. Nagel, K., Breuer, D., Spohn, T, 2004. A model for the interior structure, evolution, and differentiation of Callisto. Icarus. 169, 402–412.ADSCrossRefGoogle Scholar
  114. Najita, J., Williams, J. P., 2005. An 850 μm survey for dust around solar-mass stars. The Astrophysical Journal. 635, 625–635.ADSCrossRefGoogle Scholar
  115. Nakamura, T, Abe, O., Internal friction of snow and ice at low frequency. Proceedings of the Sixth International Conference on Internal Friction and Ultrasonic Attenuation in Solids. University of Tokyo Press, Tokyo, 1977, p. 285.Google Scholar
  116. Cassini RADAR observations of Enceladus, Tethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe. Icarus. 183, 479–490.ADSCrossRefGoogle Scholar
  117. Parmentier, E. M., Sotin, C., Travis, B. J., 1994. Turbulent 3D thermal convection in an infinite Prandtl number, volumetrically heated fluid: Implications for mantle dynamics. Geophysical Journal International. 116, 241–251.ADSCrossRefGoogle Scholar
  118. Peale, S. J., Rotational histories of the natural satellites. In: J. A. Burns (Ed.), Planetary Satellites. University of Arizona Press, Tucson, AZ, 1977, pp. 87–112.Google Scholar
  119. Peale, S. J., 1999. Origin and evolution of the natural satellites. Annual Review of Astronomy and Astrophysics. 37, 533–602.ADSCrossRefGoogle Scholar
  120. Petrenko, V. F., Whitworth, R. W., 1999. Physics of Ice. Oxford Univ. Press, Oxford.Google Scholar
  121. Porco, C. C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J. A., Charnoz, S., Cooper, N., Dawson, D. D., Del Genio, A. D., Denk, T., Dones, L., Dyudina, U., Evans, M. W., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A. P., Jacobson, R. A., Johnson, T. V., McEwen, A., Murray, C. D., Neukum, G., Owen, W. M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P. C., Tiscareno, M., Turtle, E., Vasavada, A. R., Veverka, J., Wagner, R., West, R., 2005. Cassini imaging science: Initial results on Phoebe and Iapetus. Science. 307, 1237–1242.ADSCrossRefGoogle Scholar
  122. Prialnik, D., Bar-Nun, A., 1990. Heating and melting of small icy satellites by the decay of Al–26. Astrophysical Journal. 355, 281–286.ADSCrossRefGoogle Scholar
  123. Prialnik, D., Bar-Nun, A., 1992. Crystallization of amorphous ice as the cause of Comet P/Halley's outburst at 14 AU. Astronomy and Astrophysics (ISSN 0004–6361). 258.Google Scholar
  124. Prialnik, D., Merk, R., 2008. Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code. I. Application to Kuiper belt objects and Enceladus. Icarus. 197, 211–20.Google Scholar
  125. Prinn, R. G., Fegley, B., 1981. Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae — Implications for satellite composition. Astrophysical Journal. 249, 308–317.ADSCrossRefGoogle Scholar
  126. Prinn, R. G., Fegley, B., Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles. In: S. Atreya, et al. (Eds.), Origin and Evolution of Planetary and Satellite Atmospheres. University of Arizona Press, Tucson, Arizona, 1989, pp. 78–136.Google Scholar
  127. Richardson, J. E., Melosh, H. J., Lisse, C. M., Carcich, B., 2007. A ballistics analysis of the deep impact ejecta plume: Determining comet tempel 1's gravity, mass, and density. Icarus. 190, 357–390.ADSCrossRefGoogle Scholar
  128. Roberts, J. H., Nimmo, F., 2008. Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus. 194, 675–689.ADSCrossRefGoogle Scholar
  129. Roberts, J. H., Nimmo, F., 2009. Tidal dissipation due to despinning and the equatorial ridge on Iapetus. Lunar and Planetary Science. 40, #1927.Google Scholar
  130. Robuchon, G., C, C., Tobie, G., Cadek, O., Sotin, C., Grasset, O., 2009. Coupling of thermal evolution and despinning of early Iape-tus. Icarus. Submitted.Google Scholar
  131. Ross, R. G., Kargel, J. S., Thermal conductivity of solar system ices, with special reference to Martian Polar Caps. Solar System Ices. Kluwer, Dordrecht, 1998.Google Scholar
  132. Schenk, P. M., Moore, J. M., Geologic landforms and processes on icy satellites. In: B. Schmitt, et al. (Eds.), Solar System Ices. Kluwer, Dordrecht, Netherlands. 1998 551–578.Google Scholar
  133. Schenk, P. M., McKinnon, W. B., 2009. One-hundred-km-scale basins on Enceladus: Evidence for an active ice shell. Geophys. Res. Lett. 36, in press.Google Scholar
  134. Schenk, P. M., Moore, J. M., 2009. Eruptive volcanism on saturn's icy moon Dione. Lunar and Planetary Science. 40, id.2465.Google Scholar
  135. Schubert, G., Spohn, T., Reynolds, R. T., Thermal histories, compositions, and internal structures of the moons of the solar system. In: J. A. Burns, M. S. Matthews (Eds.), Satellites. University of Arizona Press, Tucson, 1986, pp. 224–292.Google Scholar
  136. Schubert, G., Anderson, J. D., Spohn, T., McKinnon, W. B., Interior composition, structure and dynamics of the Galilean satellites. In: F. Bagenal, et al. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, U.K. 2004, pp. 281–306.Google Scholar
  137. Schubert, G., Anderson, J. D., Travis, B. J., Palguta, J., 2007. Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus. 188, 345–355.ADSCrossRefGoogle Scholar
  138. Scott, H. P., Williams, Q., Ryerson, F. J., 2002. Experimental constraints on the chemical evolution of large icy satellites. Earth and Planetary Science Letters. 203, 399–412.ADSCrossRefGoogle Scholar
  139. Shock, E. L., McKinnon, W. B., 1993. Hydrothermal processing of cometary volatiles — Applications to Triton. Icarus. 106, 464–477.ADSCrossRefGoogle Scholar
  140. Shoshany, Y., Prialnik, D., Podolak, M., 2002. Monte Carlo modeling of the thermal conductivity of porous cometary ice. Icarus. 157, 219–227.ADSCrossRefGoogle Scholar
  141. Showman, A. P., Malhotra, R., 1997. Tidal evolution into the Laplace resonance and the resurfacing of Ganymede. Icarus. 127, 93–111.ADSCrossRefGoogle Scholar
  142. Shu, F. H., Johnstone, D., Hollenbach, D., 1993. Photoevaporation of the solar nebula and the formation of the giant planets. Icarus. 106, 92–101.ADSCrossRefGoogle Scholar
  143. Shukolyukov, A., Lugmair, G. W., 1993. Fe-60 in eucrites. Earth and Planetary Science Letters (ISSN 0012–821X). 119, 159–166.ADSCrossRefGoogle Scholar
  144. Sohl, F., Spohn, T., Breuer, D., Nagel, K., 2002. Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus. 157, 104–119.ADSCrossRefGoogle Scholar
  145. Sohl, F., Hussmann, H., Schwentker, B., Spohn, T., Lorenz, R. D., 2003. Interior structure models and tidal Love numbers of Titan. Journal of Geophysical Research. E. Planets. 108, 5130.ADSCrossRefGoogle Scholar
  146. Solomatov, V. S., Moresi, L. N., 2000. Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. Journal of Geophysical Research. 105, 21795–21818.ADSCrossRefGoogle Scholar
  147. Solomatov, V. S., Barr, A. C., 2006. Onset of convection in fluids with strong temperature-dependent, power-law viscosity. Physics of the Earth and Planetary Interiors. 155, 140–145.ADSCrossRefGoogle Scholar
  148. Sotin, C., Labrosse, S., 1999. Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: Applications to the transfer of heat through planetary mantles. Physics of the Earth and Planetary Interiors. 112, 171–190.ADSCrossRefGoogle Scholar
  149. Sotin, C., Castillo, J. C., Tobie, G., Matson, D. L., 2006. Onset of convection in mid-sized icy satellites. EGU. EGU06-A-08124.Google Scholar
  150. Sotin, C., Tobie, G., Wahr, J., McKinnon, W. B., Tides and tidal heating on Europa. In: R. T. Pappalardo, et al. (Eds.), Europa. University of Arizona Press, Tucson, 2009.Google Scholar
  151. Squyres, S. W., Croft, S. K., The tectonics of icy satellites. In: J. A. Burnes, M. S. Matthews (Eds.), Satellites. University of Arizona Press, Tucson, AZ, 1986, pp. 293–341.Google Scholar
  152. Squyres, S. W., Reynolds, R. T., Summers, A. L., Shung, F., 1988. Ac-cretional heating of the satellites of Saturn and Uranus. Journal of Geophysical Research. 93, 8779–8794.ADSCrossRefGoogle Scholar
  153. Stevenson, D. J., Harris, A. W., Lunine, J. I., Origins of satellites. In: J. A. Burns, M. S. Matthews (Eds.), Satellites. University of Arizona Press, Tucson, 1986, pp. 39–88.Google Scholar
  154. Tachibana, S., Huss, G. R., Kita, N. T., Shimoda, G., Morishita, Y., 2006. 60Fe in Chondrites: Debris from a nearby supernova in the early solar system? The Astrophysical Journal. 639, L87–L90.ADSCrossRefGoogle Scholar
  155. Takeuchi, H., Saito, M., Seismic surface waves. Methods in Computational Physics. Academic Press, New York, 1972, pp. 217–295.Google Scholar
  156. Thomas, P. C., Armstrong, J. W., Asmar, S. W., Burns, J. A., Denk, T., Giese, B., Helfenstein, P., Iess, L., Johnson, T. V., McEwen, A., Nicolaisen, L., Porco, C., Rappaport, N., Richardson, J., Somenzi, L., Tortora, P., Turtle, E. P., Veverka, J., 2007a. Hyperion's spongelike appearance. Nature. 448, 50–53.ADSCrossRefGoogle Scholar
  157. Thomas, P. C., Burns, J. A., Helfenstein, R., Squyres, S., Veverka, J., Porco, C., Turtle, E. P., McEwen, A., Denk, T., Giese, B., Roatsch, T., Johnson, T. V., Jacobson, R. A., 2007b. Shapes of the saturnian icy satellites and their significance. Icarus. 190, 573–584.ADSCrossRefGoogle Scholar
  158. Tobie, G., Grasset, O., Lunine, J. I., Mocquet, A., Sotin, C., 2005a. Titan's internal structure inferred from a coupled thermal-orbital model. Icarus. 175, 496–502.ADSCrossRefGoogle Scholar
  159. Tobie, G., Mocquet, A., Sotin, C., 2005b. Tidal dissipation within large icy satellites: Applications to Europa and Titan. Icarus. 177, 534–549.ADSCrossRefGoogle Scholar
  160. Tobie, G., Cadek, O., Sotin, C., 2008. Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus. 196, 642–652.ADSCrossRefGoogle Scholar
  161. Travis, B. J., Schubert, G., 2005. Hydrothermal convection in carbonaceous chondrite parent bodies. Earth and Planetary Science Letters. 240, 234–250.ADSCrossRefGoogle Scholar
  162. Turcotte, D. L., Schubert, G., 1982. Geodynamics. John Wiley & Sons, New York.Google Scholar
  163. Turcotte, D. L., Schubert, G., 2002. Geodynamics, 2nd edn. Cambridge University Press, Cambridge.Google Scholar
  164. Turrini, D., Marzari, F., Beust, H., 2008. A new perspective on the irregular satellites of Saturn-I. Dynamical and collisional history. Monthly Notices of the Royal Astronomical Society. 391, 1029–1051.ADSCrossRefGoogle Scholar
  165. Van Schmus, W. R., Natural radioactivity of the crust and mantle. In: T. J. Ahrens (Ed.), Global Earth physics: A Handbook of Physical Constants. American Geophysical Union., Washington, DC, 1995, pp. 283–291.Google Scholar
  166. Vanhala, H. A. T., Boss, A. P., 2002. Injection of radioactivities into the forming solar system. Astrophysical Journal. 575, 1144–1150.ADSCrossRefGoogle Scholar
  167. Verbiscer, J., Peterson, D. E., Skrutskie, M. F., Cushing, M., Helfenstein, P., Nelson, M. J., Smith, J. D., Wilson, J. C., Ammonia Hydrate on Tethys' Trailing Hemisphere. Vol. 1406. Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX, 77058– 1113, USA, 2008, pp. 156–157.Google Scholar
  168. Wahr, J., Selvans, Z. A., Mullen, M. E., Barr, A. C., Collins, G. C., Selvans, M. M., Pappalardo, R. T., 2009. Modeling stresses on satellites due to non-synchronous rotation and orbital eccentricity using gravitational potential theory. Icarus. 200, 188–206.ADSCrossRefGoogle Scholar
  169. Waite, J. H., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., Mousis, O., Young, D. T., Brockwell, T., Westlake, J., Nguyen, M.-J., Teolis, B., Niemann, H., McNutt, R. L., Perry, M., Ip, W. H., 2009. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature. 460, 487–490.ADSCrossRefGoogle Scholar
  170. Waite, J. H., Jr., Combi, M. R., Wing-Huen, I., Cravens, T. E., McNutt, R. L., Jr., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H. B., Gell, D., Magee, B., Fletcher, G., Lunine, J., Wei-Ling, T., 2006. Cassini Ion and Neutral Mass Spectrometer: Enceladus plume composition and structure. Science. 311, 1419–22.ADSCrossRefGoogle Scholar
  171. Wasserburg, G. J., Papanastassiou, D. A., Some short-lived nuclides in the early Solar System. In: C. A. Barnes, et al. (Eds.), Essays in Nuclear Astrophysics, ed. CA Barnes, DD Clayton, and DN Schramm. Cambridge University Press, New York, 1982, p. 77.Google Scholar
  172. Wasson, J. T., Kalleymen, G. W., 1988. Composition of chondrites. Philosophical Transactions Royal Society of London A. 325, 535–544.ADSCrossRefGoogle Scholar
  173. Wong, M. H., Lunine, J. I., Atreya, S. K., Johnson, T., Mahaffy, P. C., Owen, T. C., Encrenaz, T., Oxygen and other volatiles in the giant planets and their satellites. In: G. MacPherson, W. Huebner (Eds.), Oxygen in Earliest Solar System Materials and Processes Miner-alogical Society of America, Chantilly, VA, 2008, pp. 219–246.Google Scholar
  174. Young, E. D., Simon, J. I., Galy, A., Russell, S. S., Tonui, E., Lovera, O., 2005. Supra-Canonical 26Al/27Al and the residence time of CAIs in the Solar protoplanetary disk. Science. 308, 223–227.ADSCrossRefGoogle Scholar
  175. Zaranek, S. E., Parmentier, E. M., 2004. The onset of convection in fluids with strongly temperature-dependent viscosity cooled from above with implications for planetary lithospheres. Earth and Planetary Science Letters. 224, 371–386.ADSCrossRefGoogle Scholar
  176. Zolotov, M. Y., Shock, E. L., 2003. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. Journal of Geophysical Research. 108.Google Scholar
  177. Zolotov, M. Y., 2007. An oceanic composition on early and today's Enceladus. Geophysical Research Letters. 34, L23203.ADSCrossRefGoogle Scholar
  178. Zschau, J., Tidal friction in the solid earth: loading tides versus body tides. In: P. Brosche, J. Sundermann (Eds.), Tidal Friction and the Earth's Rotation. Springer, Berlin, 1978.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Dennis L. Matson
    • 1
  • Julie C. Castillo-Rogez
    • 1
  • Gerald Schubert
    • 2
  • Christophe Sotin
    • 1
  • William B. McKinnon
    • 3
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.University of California, Los AngelesLos AngelesUSA
  3. 3.Washington University in St. LouisSt. LouisUSA

Personalised recommendations