Advertisement

Fundamental Plasma Processes in Saturn's Magnetosphere

  • B. H. Mauk
  • D. C. Hamilton
  • T. W. Hill
  • G. B. Hospodarsky
  • R. E. Johnson
  • C. Paranicas
  • E. Roussos
  • C. T. Russell
  • D. E. Shemansky
  • E. C. SittlerJr.
  • R. M. Thorne

Abstract

In this chapter, we review selected fundamental plasma processes that control the extensive space environment, or magnetosphere, of Saturn (see Chapter 9, for the global context). This writing occurs at a point in time when some measure of maturity has been achieved in our understanding of the operations of Saturn's magnetosphere and its relationship to those of Earth and Jupiter. Our understanding of planetary magnetospheres has exploded in the past decade or so partly because of the presence of orbiting spacecraft (Galileo and Cassini) as well as remote sensing assets (e.g., Hubble Space Telescope). This book and chapter are intended to take stock of where we are in our understanding of Saturn's magnetosphere following the successful return and analysis of extensive sets of Cassini data. The end of the prime mission provides us with an opportunity to consolidate older and newer work to provide guidance for continuing investigations.

Keywords

Solar Wind Magnetic Field Line Phase Space Density Chorus Emission Dayside Reconnection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Achilleos N et al. (2006) Orientation, location, and velocity of Saturn's bow shock: Initial results from the Cassini spacecraft. J Geophys Res 111:A03201, doi: 10.1029/2005JA011297Google Scholar
  2. Akalin F (2005) Observation of a whistler in the magnetosphere of Saturn. M.S. thesis, University of Iowa, Iowa City, IowaGoogle Scholar
  3. Akalin F, Gurnett DA, Averkamp TF, Persoon, AM, Santolik O, Kurth WS, Hospodarsky GB (2006) The first whistler observed in the magnetosphere of Saturn. Geophys Res Lett 33:L20107, doi: 10.1029/2006GL027019ADSGoogle Scholar
  4. Alexeev II, Kalegaev VV, Belenkaya ES, Bobrovnikov SY, Bunce EJ, Cowley SWH, Nichols JD (2006), A global magnetic model of Saturn's magnetosphere and a comparison with Cassini SOI data. Geophys Res Lett 33:L08101, doi: 10.1029/2006GL025896Google Scholar
  5. Anderson JD, Schubert G (2007) Saturn's satellite Rhea is a homogeneous mix of rock and ice Geophys Res Lett 34:L02202, doi: 10.129/2006GL028100Google Scholar
  6. André N, Dougherty MK, Russell CT, Leisner JS, Khurana KK (2005) Dynamics of the Saturnian inner magnetosphere: First inferences from the Cassini magnetometers about small-scale plasma transport in the magnetosphere. Geophys Res Lett.32(14):L14S06.1–L14S06.5, doi: 10.1029/2005GL022643Google Scholar
  7. André N et al. (2007) Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere. Geophys Res Lett 34:L14108, doi: 10.1029/2007GL030374ADSGoogle Scholar
  8. Armstrong TP, Paonessa MT, Bell EV II, Krimigis SM (1983) Voyager observations of Saturnian ion and electron phase space densities. J Geophys Res 88:8893–8904ADSGoogle Scholar
  9. Arridge CS, Russell CT, Khurana KK, Achilleos N, André N, Rymer AM, Dougherty MK, Coates AJ (2007) Mass of Saturn's mag-netodisc: Cassini observations. Geophys Res Lett 34:L09108, doi: 10.1029/2006GL028921Google Scholar
  10. Arridge CS, Russell CT, Khurana KK, Achilleosv, Cowley SWH, Dougherty MK, Southwood DJ, Bunce EJ (2008) Saturn's magnetodisc current sheet. J Geophys Res 113:A04214, doi: 10.1029/2007JA012540Google Scholar
  11. Ashour-Abdalla M, Kennel CF (1978) Nonconvective and convective electron cyclotron harmonic instabilities. J Geophys Res 83:1531–1543ADSGoogle Scholar
  12. Badman SV, Cowley SWH (2007) Significance of Dungey-cycle flows in Jupiter's and Saturn's magnetospheres, and their identification on closed equatorial field lines Ann Geophys 25:941ADSGoogle Scholar
  13. Bagenal F (1997) The ionization source near Io from Galileo wake data Geophys Res Lett 24:2111ADSGoogle Scholar
  14. Barbosa DD (1986) Medium energy electrons and heavy ions in Jupiter's magnetosphere: Effects of lower hybrid wave-particle interactions. J Geophys Res 91:5605–5615ADSGoogle Scholar
  15. Barbosa DD (1987) Titan's atomic nitrogen torus: Inferred properties and consequences for the Saturnian aurora. Icarus 72:53–61ADSGoogle Scholar
  16. Barbosa DD (1994) Neutral cloud theory of the Jovian nebula: Anomalous ionization effect of superthermal electrons Astrophys J 430:376–386ADSGoogle Scholar
  17. Belcher JW (1983) The low-energy plasma in the Jovian magnetosphere In: Dessler AJ (ed) Physics of the Jovian magnetosphere, pp 68–105. Cambridge, New YorkGoogle Scholar
  18. Belcher JW, McNutt RL Jr, Richardson JD, Selesnick RS, Sittler EC Jr, Bagenal F (1991) The plasma environment of Uranus. In Bergstrahl JT, Miner ED, Matthews MS (eds) Uranus, p 780. University of Arizona Press, TucsonGoogle Scholar
  19. Bertucci C, Achilleos N, Mazelle C, Hospodarsky GB, Thomsen M, Dougherty MK, Kurth W (2007) Low-frequency waves in the foreshock of Saturn: First results from Cassini. J Geophys Res 112:A09219, doi: 10.1029/2006JA012098Google Scholar
  20. Birch PC, Chapman SC (2001) Detailed structure and dynamics in particle in-cell simulations of the lunar wake Physics of Plasmas 8:4551–4559, doi: 10.1063/1.1398570ADSGoogle Scholar
  21. Bolton SJ, Thorne RM, Gurnett DA, Kurth WS, Williams DJ (1997) Enhanced whistler-mode emissions: Signatures of interchange motion in the Io torus. Geophys Res Lett 24:2123–2126ADSGoogle Scholar
  22. Borovsky JE (1993) Auroral arc thicknesses as predicted by various theories. J Geophys Res 98(A4):6101–6138ADSGoogle Scholar
  23. Bortnik J, Thorne RM (2007) The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons. J Atmos Sol Terr Phys 69:378–386ADSGoogle Scholar
  24. Bouhram M, Johnson RE, Berthelier J-J, Illiano J-M, Tokar RL, Young DT, Crary FJ (2006) A test-particle model of the atmosphere/ionosphere system of Saturn's main rings. Geophys Res Lett 33:L05106, doi: 10.1029/2005GL025011Google Scholar
  25. Boyle CB, Reiff PH, Hairston MR (1997) Empirical polar cap potentials. J Geophys Res 102:111–125ADSGoogle Scholar
  26. Brandt PC, Paranicas CP, Carbary JF, Mitchell DG, Mauk BH, Krimigis SM (2008) Understanding the global evolution of Saturn's ring current. Geophys Res Lett 35:L17101, doi: 10.1029/2008GL034969ADSGoogle Scholar
  27. Brice NM, Ioannidis GA (1970) The magnetospheres of Jupiter and Earth. Icarus 13:173–183ADSGoogle Scholar
  28. Bunce EJ, Cowley SWH, Wright DM, Coates AJ, Dougherty MK, Krupp N, Kurth WS, Rymer AM (2005a) In situ observations of a solar wind compression induced hot plasma injection in Saturn's tail. Geophys Res Lett 32:L20S04, doi: 10.1029/2005GL022888Google Scholar
  29. Bunce EJ, Cowley SWH, Milan SE (2005b) Interplanetary magnetic field control of Saturn's polar cusp aurora. Annal Geophys 23:1405–1431ADSGoogle Scholar
  30. Bunce EJ, Cowley SWH, Alexeev II, Arridge CS, Dougherty MK, Nichols JD, Russell CT (2007) Cassini observations of the variation of Saturn's ring current parameters with system size. J Geophys Res 112:A10202, doi: 10.1029/2007JA012275ADSGoogle Scholar
  31. Burch JL, Goldstein J, Hill TW, Young DT, Crary FJ, Coates AJ, André N, Kurth WS, Sittler EC Jr (2005) Properties of local plasma injections in Saturn's magnetosphere Geophys Res Lett 32:L14S02, doi: 10.1029/2005GL022611Google Scholar
  32. Burch JL, Goldstein J, Lewis WS, Young DT, Coates AJ, Dougherty MK, André N (2007) Tethys and Dione as sources of outward-flowing plasma in Saturn's magnetosphere. Nature 447 (14 June 2007), doi: 10.1038/nature05906Google Scholar
  33. Burch JL, Goldstein J, Mokashi P, Lewis WS, Paty C, Young DT, Coates AJ, Dougherty MK, André N (2008) On the cause of Saturn's plasma periodicity. Geophys Res Lett 35:L14105, doi: 10.1029/2008GL034951ADSGoogle Scholar
  34. Burger MH, Sittler EC Jr, Johnson RE, Smith HT, Tucker OJ, Shematovich VI (2007) Understanding the escape of water from Enceladus. J Geophys Res 112:A06219, doi: 10.1029/ 2006JA012086Google Scholar
  35. Burns JA, Showalter MR, Cuzzi JN, Durisen RH (1983) Saturn's electrostatic discharges: Could lightning be the cause? Icarus 54:280–295ADSGoogle Scholar
  36. Burton RK, McPherron RL et al. (1975) An empirical relationship between interplanetary conditions and Dst J Geophys Res. 80: (31) 4204–4214ADSGoogle Scholar
  37. Calvin WM, Johnson RE, Spencer JR (1996) O2 on Ganymede: Spectral characteristics and plasma formation mechanisms. Geophys Res Lett 23:673–676ADSGoogle Scholar
  38. Carbary JF, Krimigis SM, Ip W-H (1983) Energetic particle microsig-natures of Saturn's satellites J Geophys Res 88:8947–8958ADSGoogle Scholar
  39. Carbary JF, Mitchell DG, Krimigis SM, Hamilton DC, Krupp N (2007a) Charged particle periodicities in Saturn's outer magnetosphere J Geophys Res, doi: 10.1029/2007JA012351Google Scholar
  40. Carbary JF, Mitchell DG, Krimigis SM, Krupp N (2007b) Evidence for spiral pattern in Saturn's magnetosphere using the new SKR longitudes. Geophys Res Lett doi 10.1029/2007GL030167Google Scholar
  41. Chen FF (1974) Introduction to plasma physics and controlled fusion; Volume 1: Plasma physics. Plenum, New York and LondonGoogle Scholar
  42. Chen Y, Hill TW (2008) Statistical analysis of injection/dispersion events in Saturn's inner magnetosphere. J Geophys Res 113:A07215, doi: 10.1029/2008JA013166Google Scholar
  43. Cheng AF, Krimigis SM, Lanzerotti LJ (1991) Energetic particles at Uranus. In: Bergstrahl JT, Miner ED, Matthews MS (eds) Uranus, p 831, University of Arizona Press, TucsonGoogle Scholar
  44. Coates, AJ, Jones GH, Lewis GR, Wellbrock A, Young DT, Crary FJ, Johnson RE, Cassidy TA, Hill TW (2009) Negative ions in the Ence-ladus plume. Icarus, acceptedGoogle Scholar
  45. Connerney JEP, Acuña MH, Ness NF (1981) Saturn's ring current and inner magnetosphere. Nature 292:724–726, doi: 10.1038/292724a0ADSGoogle Scholar
  46. Cooper JF (1983) Nuclear cascades in Saturn's rings — Cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. J Geophys Res 88:3945–3954ADSGoogle Scholar
  47. Coroniti FV, Scarf FL, Kennel CF, Kurth WS (1984) Analysis of chorus emissions at Jupiter. J Geophys Res 89:3801–3820ADSGoogle Scholar
  48. Cowee MM, Strangeway RJ, Russell CT, Winske D (2006) One-dimensional hybrid simulations of planetary ion pickup: Techniques and verification. J Geophys Res 111:A12213, doi: 10.1029/2006JA011996ADSGoogle Scholar
  49. Cowee MM, Russell CT, Strangeway RJ, Blanco-Cano X (2007) One-dimensional hybrid simulations of obliquely propagating ion cyclotron waves: Application to ion pickup at Io. J Geophys Res 112:A06230, doi: 10.1029/2006JA012230Google Scholar
  50. Cowley SWH, Bunce EJ, O'Rourke JM (2004) A simple quantitative model of plasma flows and currents in Saturn's polar ionosphere. J Geophys Res 109:A05212, doi: 10.1029/2003JA010375Google Scholar
  51. Cui J, Yelle RV, Volk K (2008) Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere J Geophys Res 113:E10004, doi: 10.1029/2007JE003032ADSGoogle Scholar
  52. De La Haye et al. (2007) Cassini Ion and Neutral Mass Spectrometer data in Titan's upper atmosphere and exosphere: Observation of a suprathermal corona. J Geophys Res 112:A07309, doi: 10.1029/2006JA012222Google Scholar
  53. Delamere PA, Bagenal F, Ergun R, Su Y-J (2003) Momentum transfer between the Io plasma wake and Jupiter's ionosphere. J Geophys Res 108(A6):1241, doi: 10.1029/2002JA009530Google Scholar
  54. Delamere PA, Bagenal F, Dols V, Ray LC (2007) Saturn's neutral torus versus Jupiter's plasma torus. Geophys Res Lett 34:L09105, doi: 10.1029/2007GL029437Google Scholar
  55. Delcourt DC (2002) Particle acceleration by inductive electric fields in the inner magnetosphere. J Atmos Sol Terr Phys 64:551–559ADSGoogle Scholar
  56. Delcourt DC, Sauvaud JA, Pedersen A (1990) Dynamics of single-particle orbits during substorm expansion phase. J Geophys Res 95:20,853Google Scholar
  57. Desch MD et al. (2006) Cassini RPWS and imaging observations of Saturn lightning. In: Rucker HO, Kurth WS, Mann G (eds) Planetary radio emissions VI, pp 103– 110. Austrian Academy of Sciences, ViennaGoogle Scholar
  58. Dougherty MK et al. (2004) The Cassini magnetic field investigation Space Sci Rev 114:331–383ADSGoogle Scholar
  59. Dougherty MK et al. (2005) Cassini magnetometer observation during Saturn orbit insertion Science 307:1266–1269ADSGoogle Scholar
  60. Dougherty MK, Khurana KK, Neubauer FM, Russell CT, Saur J, Leisner JS, Burton ME (2006) Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer Science 311:1406–1409ADSGoogle Scholar
  61. Drake JF, Shay MA, Thongthai W, Swisdak M (2005) Production of energetic electrons during magnetic reconnection. Phys Rev Lett 94:095001ADSGoogle Scholar
  62. Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47–48ADSGoogle Scholar
  63. Esposito LW, Colwell JE, Larsen K et al. (2005) Ultraviolet imaging spectroscopy shows an active Saturnian system. Science 307:1251–1255ADSGoogle Scholar
  64. Eviatar A, Richardson JD (1986) Corotation of the Kronian magnetosphere. J Geophys Res 91:3299–3301ADSGoogle Scholar
  65. Farrell WM, Kurth WS, Kaiser ML, Desch MD, Gurnett DA, Canu P (2005) Narrowband Z-mode emissions interior to Saturn's plasma torus, J Geophys Res 110:A10204, doi: 10.1029/2005JA011102ADSGoogle Scholar
  66. Farrell WM, Kaiser ML, Gurnett DA, Kurth WS, Persoon AM, Wahlund JE, Canu P (2008) Mass unloading along the inner edge of the Enceladus plasma torus. Geophys Res Lett 35:L02203, doi: 10.1029/2007GL032306Google Scholar
  67. Farmer A (2008) Saturn in hot water: Viscous evolution of the Ence-ladus torus. Saturn after Cassini Workshop, London, 28 JulyGoogle Scholar
  68. Fillius W (1976) The trapped radiation belts of Jupiter. Gehrels T (ed) Jupiter p 896, University of Arizona Press, TucsonGoogle Scholar
  69. Fischer GM et al. (2006) Saturn lightning recorded by Cassini/RPWS in 2004. Icarus 183(1):135–152, doi: 10.1016/j.icarus.2006.02.010ADSGoogle Scholar
  70. Fischer G, Kurth WS, Dyudina UA, Kaiser ML, Zarka P, Lecacheux A, Ingersoll AP, Gurnett DA (2007) Analysis of a giant lightning storm on Saturn. Icarus 190:528–544, doi: 10.1016/j.icarus.2007.04.002ADSGoogle Scholar
  71. Fischer G, Gurnett DA, Kurth WS, Akalin F, Zarka P, Dyudina UA, Farrell WM, Kaiser ML (2008) Atmospheric electricity at Saturn. Space Sci Rev 137:271–285, doi: 10.1007/s11214–008–9370-zADSGoogle Scholar
  72. Fleshman BL, Delamere PA, Bagenal F (2008) A one-box chemistry model of the Enceladus torus: Preliminary results and sensitivity. Saturn after Cassini Workshop, London, JulyGoogle Scholar
  73. Fox NJ, Mauk BH, Blake JB (2006) Role of non-adiabatic processes in the creation of the outer radiation belts. Geophys Res Lett 33:L18108, doi: 10.1029/2006GL026598ADSGoogle Scholar
  74. Frank LA, Paterson WR (2004) Plasmas observed near local noon in Jupiter's magnetosphere with the Galileo spacecraft. J Geophys Res 109:A11217, doi: 10.1029/2002JA009795ADSGoogle Scholar
  75. Ge YS, Jian LK, Russell CT (2007) Growth phase of Jovian substorms. Geophys Res Lett 34:L23106, doi: 10.1029/2007GL031987ADSGoogle Scholar
  76. Gehrels N, Stone EC (1983) Energetic oxygen and sulfur ions in the Jovian magnetosphere and their contributions to the auroral excitation. J Geophys Res 88:5537ADSGoogle Scholar
  77. Gerard J-C, Bunce EJ, Grodent D, Cowley SWH, Clarke JT, Badman SV (2005) Signature of Saturn's auroral cusp: Simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring. J Geophys Res 110:A11201, doi: 10.1029/2005JA011094ADSGoogle Scholar
  78. Giampieri G, Dougherty MK, Smith EJ, Russell CT (2006) A regular period for Saturn's magnetic field that may track its internal rotation. Nature 441:62–64, doi: 10.1038/nature04750ADSGoogle Scholar
  79. Glocer A et al. (2007) Polar wind outflow model: Saturn results. J Geo-phys Res 112:A01304, doi: 10.1029/2006JA011755Google Scholar
  80. Gold T (1959) Motions in the magnetosphere of the Earth. J Geophys Res 64:1219–1224ADSGoogle Scholar
  81. Goldreich P, Lynden-Bell D (1969) Io, a Jovian unipolar inductor. As-trophys J 156:59–78ADSGoogle Scholar
  82. Goldreich P, Farmer AJ (2007) Spontaneous axisymmetry breaking of the external magnetic field at Saturn. J Geophys Res 112:A05225, doi: 10.1029/2006JA012163Google Scholar
  83. Goldstein BE, Ip W-H (1983) Magnetic drifts at Io: Depletion of 10-MeV electrons at Voyager 1 encounter due to a forbidden zone. J Geophys Res 88:6137ADSGoogle Scholar
  84. Gurnett D (1975) The Earth as a radio source: The nonthermal continuum. J Geophys Res 80:2751–2763ADSGoogle Scholar
  85. Gurnett DA, Kurth WS, Scarf FL (1981a) Plasma waves near Saturn: Initial results from Voyager 1. Science, 212:235–239ADSGoogle Scholar
  86. Gurnett DA, Kurth WS, Scarf FL (1981b) Narrowband electromagnetic emissions from Saturn's magnetosphere. Nature 292:733ADSGoogle Scholar
  87. Gurnett DA, Kurth WS, Scarf FL (1983) Narrowband electromagnetic emissions from Jupiter's magnetosphere. Nature 302:385ADSGoogle Scholar
  88. Gurnett DA et al. (2004) The Cassini radio and plasma wave science investigation. Space Sci Rev 114:395–463ADSGoogle Scholar
  89. Gurnett DA et al. (2005) Radio and plasma wave observations at Saturn from Cassini's Approach and first orbit. Science 307:1255–1259, doi: 10.1126/science.1105356ADSGoogle Scholar
  90. Gurnett DA, Persoon AM, Kurth WS, Groene JB, Averkamp TF, Dougherty MK, Southwood DJ (2007) The variable rotation period of the inner region of Saturn's plasma disk. Science 316(5823):442–445, doi: 10.1126/science.1138562ADSGoogle Scholar
  91. Hamilton DC, Brown DC, Gloeckler G, Axford WI (1983) Energetic atomic and molecular ions in Saturn's magnetosphere. J Geophys Res 88:8905–8922ADSGoogle Scholar
  92. Hamilton DC et al. (2009a) The major species of Saturn's ring current and their average spectra. Geophys Res Lett. submittedGoogle Scholar
  93. Hamilton DC, DiFabio RD, Christon SP, Krimigis SM, Mitchell DG, Dandouras J (2009b) Suprathermal heavy ions in Saturn's magnetosphere. Geophys Res Lett. submittedGoogle Scholar
  94. Hamilton DC, DiFabio RD, Mitchell DG, Krimigis SM (2009c) Suprathermal H+ 3 in Saturn's magnetosphere. Geophys Res Lett. submittedGoogle Scholar
  95. Hansen KC, Ridley AJ, Hospodarsky GB, Dougherty MK, Gombosi TI, Toth G (2005) Global MHD simulations of Saturn's magnetosphere at the time of Cassini approach. Geophys Res Lett 32:L20S06, doi: 10.1029/2005GL022835Google Scholar
  96. Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A, Pryor W, Shemansky D, West R (2006) Enceladus' water vapor plume. Science 311:1422ADSGoogle Scholar
  97. Hartle RE et al. (2006) Preliminary interpretation of Titan plasma interaction as observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1. Geophys Res Lett 33:L08201, doi: 10.1029/2005GL024817Google Scholar
  98. Herbert F, Sandel BR (1995) Radial profiles of ion density and parallel temperature in the Io plasma torus during the Voyager 1 encounter. J Geophys Res 100(a10):19,513–19,529ADSGoogle Scholar
  99. Hill TW (1979) Inertial limit on corotation. J Geophys Res 84:6554–6558ADSGoogle Scholar
  100. Hill TW, Michel FC (1976) Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere. J Geophys Res 81:4561–4565ADSGoogle Scholar
  101. Hill TW, Pontius DH Jr (1998) Plasma injection near Io. J Geophys Res 103:19,879Google Scholar
  102. Hill TW, Vasyliūnas VM (2002) Jovian auroral signature of Io's coro-tational wake. J Geophys Res (Space Phys), 107(A12):SMP 271, CiteID 1464, doi 10.1029/2002JA009514Google Scholar
  103. Hill TW et al (2005) Evidence for rotationally driven plasma transport in Saturn's magnetosphere Geophys Res Lett 32:L14S10, doi: 10.1029/2005GL022620Google Scholar
  104. Hill TW et al. (2008a) Plasmoids in Saturn's magnetotail. J Geophys Res 113:A01213, doi: 10.1029/2007JA012626Google Scholar
  105. Hill TW, Chen Y, Wu H, Johnson RE, Mauk BH (2008b) Injection structures in Saturn's inner magnetosphere (poster). Saturn After Cassini-Huygens Symposium, Imperial College, London, 28 July–1 AugustGoogle Scholar
  106. Horne RB, Thorne RM (2000) Electron pitch angle diffusion by electrostatic electron cyclotron waves: the origin of pancake distributions. J Geophys Res 105:5391–5402ADSGoogle Scholar
  107. Horne RB, Thorne RM (2003) Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys Res Lett 30(10):1527, doi: 10.1029/2003GL016973ADSGoogle Scholar
  108. Horne RB, Thorne RM, Meredith NP, Anderson RR (2003) Diffuse auroral electron scattering by electron cyclotron harmonic and whistler mode waves during an isolated substorm. J Geophys Res 108(A7):1290, doi: 10.1029/2002JA009736Google Scholar
  109. Horne RB et al. (2005) Wave acceleration of electrons in the Van Allen radiation belts. Nature 437:227–230ADSGoogle Scholar
  110. Horne RB, Thorne RM, Glauert SA, Menietti JD, Shprits YY, Gurnett DA (2008) Gyro-resonant electron acceleration at Jupiter. Nature Phys 4:301Google Scholar
  111. Hoshino M (2005) Electron surfing acceleration in magnetic reconnec-tion. J Geophys Res 110:A10215, doi: 10.1029/2005JA011229ADSGoogle Scholar
  112. Hospodarsky GB, Averkamp TF, Kurth WS, Gurnett DA, Dougherty M, Inan U, Wood T (2001) Wave normal and Poynting vector calculations using the Cassini radio and plasma wave instrument. J Geo-phys Res 106:30, 253–30, 269ADSGoogle Scholar
  113. Hospodarsky GB, Kurth WS, Gurnett DA, Zarka P, Canu P, Dougherty M, Jones GH, Coates A, Rymer A (2006) Observations of Langmuir waves detected by the Cassini spacecraft. In: Rucker HO, Kurth WS, Mann G (eds) Planetary radio emissions VI, pp 67–79. Austrian Academy of Sciences Press, ViennaGoogle Scholar
  114. Hospodarsky GB, Averkamp TF, Kurth WS, Gurnett DA, Santolik O, Dougherty MK (2008) Observations of chorus at Saturn using the Cassini radio and plasma wave instrument. J Geophys Res 113:A12206, doi: 10.1029/2008JA013237ADSGoogle Scholar
  115. Huang TS, HillTW (1991) Drift-wave instability in the Io plasma torus. J Geophys Res 96:14,075–14,083ADSGoogle Scholar
  116. Huddleston DE, Russell CT et al. (1997) Magnetopause structure and the role of reconnection at the outer planets. J Geophys Res 102:24,289–24,302ADSGoogle Scholar
  117. Huddleston DE, Strangeway RJ, Warnecke J, Russell CT, Kivelson MG (1998) Ion cyclotron waves in the Io torus: Wave dispersion, free energy analysis, and SO2 + source rate estimates. J Geophys Res 103:19,887–19,889ADSGoogle Scholar
  118. Jackman CM, Achilleos N, Bunce EJ, Cowley SWH, Dougherty MK, Jones GH, Milan SE, Smith EJ (2004) Interplanetary magnetic field at ~9AU during the declining phase of the solar cycle and its implications for Saturn's magneto spheric dynamics. J Geophys Res 109:A11203, doi: 10.1029/2004JA010614ADSGoogle Scholar
  119. Jackman CM, Russell CT, South wood DJ, Arridge CS, Achilleos N, Dougherty MK (2007) Strong, rapid depolarization in Saturn's magnetotail: In situ evidence of reconnection. Geophys Res Lett 34:L11203, doi: 10.1029/2007GL029764ADSGoogle Scholar
  120. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New YorkzbMATHGoogle Scholar
  121. Johnson RE (1990) Energetic charged particle interactions with atmospheres and surfaces. Springer, New YorkGoogle Scholar
  122. Johnson RE (2009) Sputtering and heating of Titan's upper atmosphere. Proc Royal Soc (London) 367:753–771, doi: 10.1098/ rsta. 2008.0244ADSGoogle Scholar
  123. Johnson RE, Quickenden TI (1997) Photolysis and radiolysis of water ice on outer solar system bodies. J Geophys Res 102:10,985–10,996ADSGoogle Scholar
  124. Johnson RE, Smith HT, Tucker OJ, Liu M, Burger MH, Sittler EC, Tokar RL (1989a) The Enceladus and OH tori at Saturn. Astrophys J 644:L137–L139ADSGoogle Scholar
  125. Johnson RE, Pospieszalska MK, Sieveka EM, Cheng AF, Lanzerotti LJ, Sittler EC (1989b) The neutral cloud and heavy ion inner torus at Saturn. Icarus 77:311–329ADSGoogle Scholar
  126. Johnson RE, Liu M, Sittler EC Jr (2005) Plasma-induced clearing and redistribution of material embedded in planetary magnetospheres. Geophys Res Lett 32:L24201, doi: 10.1029/2005GL024275ADSGoogle Scholar
  127. Johnson RE et al. (2006a) Production, ionization and redistribution of O2 Saturn's ring atmosphere. Icarus 180:393–402ADSGoogle Scholar
  128. Johnson RE, Smith HT, Tucker OJ, Liu M, Tokar R (2006b) The Enceladus and OH tori at Saturn. Astrophys J Letts 644:L137–L139ADSGoogle Scholar
  129. Johnson RE, Fama M, Liu M, Baragiola RA, Sittler EC Jr, Smith HT (2008) Sputtering of ice grains and icy satellites in Saturn's inner magnetosphere. Planet Space Sci 56:1238–1243ADSGoogle Scholar
  130. Johnson RE, Tucker OJ, Michael M, Sittler EC, Smith HT, Young DT, Waite JH Jr (2009) Mass loss processes in Titan's upper atmosphere. In: Titan after Cassini Huygens, Chapter 15, in pressGoogle Scholar
  131. Jones D (1976) Source of terrestrial nonthermal continuum radiation. Nature 260:686ADSGoogle Scholar
  132. Jones GH, Roussos E, Krupp N, Paranicas C, Woch J, Lagg A, Mitchell DG, Krimigis SM Dougherty MK (2006a) Enceladus' Varying imprint on the magnetosphere of Saturn Science 311:1412–1415ADSGoogle Scholar
  133. Jones, GH et al. (2006b) Formation of Saturn's ring spokes by lightning-induced electron beams. Geophys Res Lett 33:L21202, doi: 10.1029/2006GL028146ADSGoogle Scholar
  134. Jones GH et al. (2008) The dust halo of Saturn's largest icy moon, Rhea. Science. doi: 10.1126/science.1151524Google Scholar
  135. Jurac S, Richardson JD (2005) A self-consistent model of plasma and neutrals at Saturn: Neutral cloud morphology. J Geophys Res 110, doi: 10.1029/2004JA010635Google Scholar
  136. Jurac S, Johnson RE, Richardson JD (2001) Saturn's E ring and production of the neutral torus. Icarus 149:384–396ADSGoogle Scholar
  137. Jurac S, McGrath MA, Johnson RE, Richardson JD, Vasyliūnas VM, Eviatar A (2002) Saturn: Search for a missing water source. Geo-phys Res Lett 29(24):2172, doi: 10.1029/2002GL015855ADSGoogle Scholar
  138. Kaiser ML, Desch MD (1980) Narrow-band Jovian kilometric radiation: A new radio component. Geophys Res Lett 7:389–393ADSGoogle Scholar
  139. Kaiser ML, Desch MD, Warwick JW, Pierce JB (1980) Voyager detection of nonthermal radio emission from Saturn. Science 209:1238–1240ADSGoogle Scholar
  140. Kaiser ML, Connerney, JEP Desch MD (1983) Atmospheric storm explanation of saturnian electrostatic discharges. Nature 303:50–53, doi: 10.1038/303050a0ADSGoogle Scholar
  141. Kaiser ML, Desch MD, Kurth WS, Lecacheux A, Genova F, Pedersen BM, Evans DR (1984) Saturn as a radio source. In: Gehrels T (ed) Saturn, p 378–416. University of Arizona Press, TucsonGoogle Scholar
  142. Kalio et al (2005) Formation of the lunar wake in quasi-neutral hybrid model. Geophys Res Lett 32:L06107, doi: 10.1029/2004GL021989Google Scholar
  143. Kellett S, Bunce EJ, Cowley SWH, Dougherty MK, Krimigis SM, Sergis N (2008) Investigations into Saturn's ring current. Saturn after Cassini Workshop, London, JulyGoogle Scholar
  144. Kennel CF, Scarf FL, Fredricks RW, McGehee JH, Coroniti FV (1970) VLF electric field observations in the magnetosphere. J Geophys Res 75:6136ADSGoogle Scholar
  145. Khurana KK et al (2004) Configuration of Jupiter's magnetosphere In: Bagenal F, Dowling T, McKinnon W (eds) Jupiter: The planet, satellites and magnetosphere, pp 513–536 Cambridge University Press, CambridgeGoogle Scholar
  146. Khurana KK, Russell CT, Dougherty MK (2007a) Magnetic portraits of Tethys and Rhea Icarus 465–477Google Scholar
  147. Khurana KK, Dougherty MK, Russell CT, Leisner JS (2007b) Mass loading of Saturn's magnetosphere near Enceladus. J Geophys Res 112(A8), doi: 10.1029/2006JA012110Google Scholar
  148. Khurana KK, Russell CT, Dougherty MK (2008) Magnetic portraits of Tethys and Rhea. Icarus 193:465–474, doi: 10.1016/ j.icarus2007.08.005ADSGoogle Scholar
  149. Kivelson MG, Khuran KK, Coronitti FV, Joy S, Russell CT, Walker RJ, Warneck J, Bennettand L, Polansk C (1997a) The magnetic field and magnetosphere of Ganymede. Geophys Res Lett 24:2155–2158ADSGoogle Scholar
  150. Kivelson MG, Khurana KK, Joy S, Russell CT, Southwood DJ, Walker RJ, Polanskey C (1997b) Europa's magnetic signature: Report from Galileo's pass on 19 December 1996. Science 276:1239–1241, doi: 10.1126/science.276.5316.1239ADSGoogle Scholar
  151. Kivelson MG, Khurana KK, Russell CT, Walker RJ (1997c) Intermittent short-duration magnetic field anomalies in the Io torus: Evidence for plasma interchange? Geophys Res Lett 24:2127–2130ADSGoogle Scholar
  152. Kivelson MG, Bagenal F, Kurth W, Neubauer FM, Paranicas C, Saur J (2004) Magnetospheric interactions with satellites In: Bage-nal F, Dowling T, McKinnon W (eds) Jupiter: The planet, satellites and magnetosphere, pp 513–536 Cambridge University Press, CambridgeGoogle Scholar
  153. Krall NA, Trivelpiece AW (1973) Principles of plasma physics. McGraw-Hill Book, New YorkGoogle Scholar
  154. Kriegel H, Simon S, Wiehle S, Kleindienst G, Motschmann U, Glassmeier K, Saur J, Khurana KK, Dougherty MK (2008) Hybrid Simulations of the Enceladus plasma interaction and comparison with MAG data. AGU Fall Meeting AbstractsGoogle Scholar
  155. Krimigis SM et al. (2005) Dynamics of Saturn's magnetosphere from MIMI during Cassini's orbital insertion Science 307(5713) 1270–1273ADSGoogle Scholar
  156. Krimigis SM, Sergis N, Mitchell DG, Hamilton DC, Krupp N (2007) A dynamic, rotating ring current around Saturn. Nature 450, doi:10.38/nature06425Google Scholar
  157. Krupp N et al. (2004) Dynamics of the Jovian magnetosphere. In: Bage-nal F, Dowling TE, McKinnon WB (eds) Jupiter, pp 617–638. Cambridge University Press, CambridgeGoogle Scholar
  158. Kurt WK, Scarf FL, Sullivan JD, Gurnett DA (1982) Detection of non-thermal continuum radiation in Saturn's magnetosphere. Geophys Res Lett 9:889ADSGoogle Scholar
  159. Kurth WS (1982) Detailed observations of the source of terrestrial narrowband electromagnetic radiation. Geophys Res Lett 9:1341–1344ADSGoogle Scholar
  160. Kurth WS, Gurnett DA (1991) Plasma waves in Planetary magnetospheres. J Geophys Res 96:18,977ADSGoogle Scholar
  161. Kurth W, Gurnett D, Anderson R (1981) Escaping nonthermal continuum radiation. J Geophys Res 86:5519–5531ADSGoogle Scholar
  162. Kurth WS, Scarf FL, Gurnett DA, Barbosa DD (1983) A survey of electrostatic waves in Saturn's magnetosphere. J Geophys Res 88:8959ADSGoogle Scholar
  163. Kurth WS, Gurnett DA, Scarf FL (1986) Sporadic narrowband radio emissions from Uranus. J Geophys Res 91:11,958–11,964ADSGoogle Scholar
  164. Kurth WS, Barbosa DD, Gurnett DA, Poynter RL, Cairns IH (1990) Low-frequency radio emissions at Neptune. Geophys Res Lett 17:1649–1653ADSGoogle Scholar
  165. Kurth WS, Gurnett DA, Roux A, Bolton SJ (1997) Ganymede: A new radio source. Geophys Res Lett 24:2167–2170ADSGoogle Scholar
  166. Kurth WS, Lecacheux A, Averkamp TF, Groene JB, Gurnett DA (2007) A Saturnian longitude system based on a variable kilometric radiation period. Geophys Res Lett. doi: 10.1029/2006GL028336Google Scholar
  167. Kurth WS, Averkamp TF, Gurnett DA, Groene JB, Lecacheux A (2008) An update to a Saturnian longitude system based on kilometric radio emissions. J Geophys Res. doi: 10.1029/2007JA012861Google Scholar
  168. Leisner JS, Russell CT, Dougherty MK, Blanco-Cano X, Strangeway RJ, Bertucci C (2006) Ion cyclotron waves in Saturn's E ring: Initial Cassini observations. Geophys Res Lett 33:L11101, doi: 10.1029/2005GL024875ADSGoogle Scholar
  169. Li W, Shprits YY, Thorne RM (2007) Dynamical evolution of energetic electrons due to wave-particle interactions during storms. J Geophys Res 112:A10220, doi: 10.1029/2007JA012368ADSGoogle Scholar
  170. Loeffler MJ, Teolis B, Baragiola RA (2006) A model study of the thermal evolution of astrophysical ices. Astrophys J 639(2): L103–L106ADSGoogle Scholar
  171. Louarn P et al. (2007) Observation of similar radio signatures at Saturn and Jupiter: Implications for the magnetospheric dynamics. Geo-phys Res Lett 34:L20113, doi: 10.1029/2007GL030368ADSGoogle Scholar
  172. Luhmann JG, Johnson RE, Tokar RL, Cravens T (2006) A model of the ionosphere of Saturn's toroidal ring atmosphere. Icarus 181:465–474ADSGoogle Scholar
  173. Lyons LR (1974) Electron diffusion driven by magnetospheric electrostatic waves. J Geophys Res 79:557ADSGoogle Scholar
  174. Lysak R (1993), Auroral plasma dynamics, Geophysical monograph 80. American Geophysical Union, Washington DCGoogle Scholar
  175. Martens HR, Reisenfeld DB, Williams JD, Johnson RE, Smith HT (2008) Observations of molecular oxygen ions in Saturn's inner magnetosphere. Geophys Res Lett, 35:L20103, doi: 10.1029/2008GL035433ADSGoogle Scholar
  176. Masters A, Achilleos N, Dougherty MK, Slavin JA, Hospodarsky GB, Arridge CS, Coates AJ (2008) An empirical model of Saturn's bow shock: Cassini observations of shock location and shape. J Geophys Res 113:A10210, doi: 10.1029/2008JA013276ADSGoogle Scholar
  177. Mauk BH (1986) Quantitative modeling of the “convection surge” mechanism of ion acceleration. J Geophys Res 91:13,423Google Scholar
  178. Mauk BH (1989) Macroscopic magnetospheric particle acceleration. Solar system plasma physics, Geophysical monograph 54, p 319. American Geophysical Union, Washington DCGoogle Scholar
  179. Mauk BH, Krimigis SM (1987) Radial force balance in Jupiter's day-side magnetosphere. J Geophys Res 92:9931ADSGoogle Scholar
  180. Mauk BH, Krimigis SM, Lepping RP (1985) Particle and field stress balance within a planetary magnetosphere. J Geophys Res 90:8253ADSGoogle Scholar
  181. Mauk BH, Krimigis SM, Cheng AF, Selesnick RS (1995) Energetic particles and hot plasmas of Neptune. In: Cruikshank DP (ed) Neptune and Triton, p 169. The University of Arizona Press, TucsonGoogle Scholar
  182. Mauk BH, Williams DJ, McEntire RW, Khurana KK, Roederer JG (1999) Storm-like dynamics of Jupiter's inner and middle magnetosphere. J Geophys Res 104:22,759–22,778ADSGoogle Scholar
  183. Mauk BH, Mitchell DG, McEntire RW, Paranicas CP, Roelof EC, Williams DJ, Krimigis SM, Lagg A (2004) Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere. J Geophys Res 109:A09S12, doi: 10.1029/2003JA010270Google Scholar
  184. Mauk BH et al. (2005) Energetic particle injections in Saturn's magnetosphere. Geophys Res Lett 32(14):L14S05.1–L14S05.5, doi: 10.1029/2005GL022485Google Scholar
  185. Maurice S, Blanc M, Prange R, Sittler EC Jr (1997) The magnetic-field-aligned polarization electric field and its effects on particle distribution in the magnetospheres of Jupiter and Saturn Planet Space Sci 45(11):1449–1465ADSGoogle Scholar
  186. McAndrews HJ et al. (2008a) Plasma in the nightside magnetosphere and the implications for global circulation (poster). Saturn After Cassini-Huygens Symposium, Imperial College, London, 28 July–1 AugustGoogle Scholar
  187. McAndrews HJ, Owens CJ, Thomsen MF, Lavraud B, Coates AJ, Dougherty MK, Young DT (2008b) Evidence for reconnection at Saturn's magnetopause. J Geophys Res 113:A04210, doi: 10.1029/2007JA012581Google Scholar
  188. McNutt RL Jr (1984) Force balance in the outer planet magnetospheres. In: Bridge HS et al. (eds) Proc 1982–4 Symposia on the Physics of Space Plasmas, pp 179–210. Sci. Publ., Cambridge, MassachusettsGoogle Scholar
  189. Melin H, Shemansky DE, Liu X (2009) The distribution of hydrogen and atomic oxygen in the magnetosphere of Saturn. Planet Space Sci, in press, doi: 10.1016/j.pss.2009.04.014Google Scholar
  190. Menietti JD, Santolik O, Rymer AM, Hospodarsky GB, Persoon AM, Gurnett DA, Coates AJ, Young DT (2008a) Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere. J Geophys Res 113:A05213, doi: 10.1029/ 2007JA012856Google Scholar
  191. Menietti JD, Santolik O, Rymer AM, Hospodarsky GB, Gurnett DA, Coates AJ (2008b) Analysis of plasma waves observed in the inner Saturn magnetosphere. Annal Geophys 26:2631–2644ADSGoogle Scholar
  192. Meredith NP, Cain M, Horne RB, Thorne RM, Summers D, Anderson RR (2003) Evidence for chorus-driven electron acceleration to rela-tivistic energies from a survey of geomagnetically disturbed periods. J Geophys Res 108(A6):1248, doi: 10.1029/2002JA009764Google Scholar
  193. Millward G, Miller S, Stallard T, Aylward A, Achilleos N (2002) On the dynamics of the Jovian ionosphere and thermosphere: III. The modeling of auroral conductivity. Icarus 160:95–107Google Scholar
  194. Mitchell DG et al. (2005) Energetic ion acceleration in Saturn's mag-netotail: Substorms at Saturn? Geophys Res Lett 32:L20S01, doi: 10.1029/2005GL022647Google Scholar
  195. Mitchell DG, Kurth WS, Hospodarsky GB, Krupp N, Saur J, Mauk BH, Carbary JF, Krimigis SM, Dougherty MK, Hamilton DC (2009) Ion conics and electron beams associated with auroral processes on Saturn. J Geophys Res 114:A02212, doi: 10.1029/2008JA013621Google Scholar
  196. Neubauer et al. (1998) The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J Geophys Res 103(E9):19,843–19,866, doi: 10.1029/97JE03370ADSGoogle Scholar
  197. Noll KS, Johnson RE, Lane AL, Domingue DL, Weaver HA (1996) Detection of ozone on Ganymede. Science 273:341–343ADSGoogle Scholar
  198. Noll KS, Roush TL, Cruikshank DP, Johnson RE, Pendleton YJ (1997) Detection of ozone on Saturn's satellites Rhea and Dione. Nature 38:45–47ADSGoogle Scholar
  199. Northrop TG (1963) The adiabatic motion of charged particles. Inter-science, New YorkzbMATHGoogle Scholar
  200. Paranicas C Cheng CF (1997) A model for satellite microsignatures for Saturn, Icarus 125:380–396ADSGoogle Scholar
  201. Paranicas CP, Mauk BH, Krimigis SM (1991) Pressure anisotropy and radial stress balance in the Jovian neutral sheet. J Geophys Res 96:21,135ADSGoogle Scholar
  202. Paranicas C, McEntire RW, Cheng AF, Lagg A, Williams DJ (2000) Energetic charged particles near Europa J Geophys Res 105(A7):16005–16016ADSGoogle Scholar
  203. Paranicas C et al. (2005a) Evidence of Enceladus and Tethys microsig-natures, Geophys Res Lett 32, doi: 10.1029/2005GL024072Google Scholar
  204. Paranicas C, Mitchell DG, Roelof EC, Brandt PC, Williams DJ, Krimigis SM, Mauk BH (2005b) Periodic intensity variations in global ENA images of Saturn. Geophys Res Lett, doi: 10.1029/2005GL023656Google Scholar
  205. Paranicas C et al. (2007) Energetic electrons injected into Saturn's neutral cloud. Geophys Res Lett 34:L02109, doi: 2006GL028676Google Scholar
  206. Paranicas C et al. (2008) Sources and. losses of energetic protons in Saturn's magnetosphere. Icarus 197:519–525ADSGoogle Scholar
  207. Parks GK (1991) Physics of space plasmas. Addison-Wesley, New YorkGoogle Scholar
  208. Paschmann G, Sonnerup BUö et al. (1979) Plasma acceleration at the Earth's magnetopause: Evidence for reconnection. Nature 282:243–246ADSGoogle Scholar
  209. Persoon AM, Gurnett DA, Kurth WS, Hospodarsky GB, Groene JB, Canu P, Dougherty, MK (2005) Equatorial electron density measurements in Saturn's inner magnetosphere Geophys Res Lett 32:L23105, doi: 10.1029/2005GL024294ADSGoogle Scholar
  210. Persoon AM, Gurnett DA, Kurth WS, Groene JB (2006) A simple scale height model of the electron density in Saturn's plasma disk. Geo-phys Res Lett 33:L18106, doi: 10.1029/2006GL027090ADSGoogle Scholar
  211. Persoon AM et al. (2009) A diffusive equilibrium model for the plasma density in Saturn's magnetosphere. J Geophys Res 114:A04211, doi: 10.1029/2008JA013912Google Scholar
  212. Piddington JH, Drake JF (1968) Electrodynamic effects of Jupiter's satellite Io. Nature 217:935–937 (09 March), doi: 10.1038/217935a0ADSGoogle Scholar
  213. Pontius DH Jr (1997) Coriolis influences on the interchange instability. Geophys Res Lett 24:1961–2964Google Scholar
  214. Pontius DH Jr, Hill TW (1982) Departure from corotation of the Io plasma torus: Local plasma production. Geophys Res Lett 9:1321–1324ADSGoogle Scholar
  215. Pontius DH, Hill TW (2006) Enceladus: A significant plasma source for Saturn's magnetosphere. J Geophys Res 111(A9), doi: 10.1029/2006JA011674Google Scholar
  216. Pontius DH Jr, Hill TW, Tokar RL (2007) Inferring the radial profile of mass loading in Saturn's magnetosphere from the observed corota-tion lag (poster). Magnetospheres of the Outer Planets 2007 Conference, San Antonio, TX (June)Google Scholar
  217. Porco CC et. al (2006) Cassini observes the active south pole of Ence-ladus Science 311:1393–1401Google Scholar
  218. Pritchett PL (2006) Relativistic electron production during guide field magnetic reconnection. J Geophys Res. 111: A10212 doi: 10.1029/2006JA011793ADSGoogle Scholar
  219. Quinn JM, Southwood DJ (1982) Observations of parallel ion energization in the equatorial region. J Geophys Res 87:10,536ADSGoogle Scholar
  220. Ray LC, Ergun RE, Delamere PA, Bagenal F, Su Y (2008a) Effect of field aligned potentials on angular momentum transfer at Jupiter, American Geophysical Union, Fall Meeting, Paper SM41B-1675, San Franscisco (18 December)Google Scholar
  221. Ray LC, Ergun RE, Delamere PA, Bagenal F (2008b) Effect of field aligned potentials on magnetospheric dynamics at Saturn. Saturn after Cassini Workshop, London (28 July)Google Scholar
  222. Richardson J (1986) Thermal ions at Saturn: Plasma parameters and implications J Geophys Res 91:1381–1389ADSGoogle Scholar
  223. Richardson J (1998) Thermal plasma and neutral gas in Saturn's magnetosphere. Rev Geophys 36:501–524ADSGoogle Scholar
  224. Richardson JD, Eviatar A, McGrath MA, Vasyliūnas VM (1998) OH in Saturn's magnetosphere: Observations and implications. J Geophys Res 103:20,245–20,255ADSGoogle Scholar
  225. Richardson JD, Belcher JW, Szabo A, McNutt RL Jr (1995) The plasma environment of Neptune. In: Cruikshank DP (ed) Neptune and Triton, p 279. The University of Arizona Press, TucsonGoogle Scholar
  226. Roederer JD (1970) Dynamics of geomagnetically trapped radiation. In: Physics and chemistry in space, Springer, BerlinGoogle Scholar
  227. Roussos E et al. (2005) Low energy electron microsignatures at the orbit of Tethys: Cassini MIMI/LEMMS observations Geophys Res Lett 32:L24107, doi: 10.1029/2005GL024084ADSGoogle Scholar
  228. Roussos E et al. (2007) Electron microdiffusion in the Saturnian radiation belts: Cassini MIMI/LEMMS observations of energetic electron absorption by the icy moons J Geophys Res 112:A06214, doi: 10.1029/2006JA012027Google Scholar
  229. Roussos E, Müller J, Simon S, Bößwetter A, Motschmann U, Fränz M, Krupp N, Woch J, Khurana K, Dougherty MK (2008a) Plasma and fields in the wake of Rhea: 3D hybrid simulation and comparison with Cassini data. Ann Geophys, 26(3):619–637ADSGoogle Scholar
  230. Roussos E, Krupp N, Armstrong TP, Paranicas C, Mitchell DG, Krimigis SM, Jones GH, Dialynas K, Sergis N, Hamilton DC (2008b) Discovery of a transient radiation belt at Saturn. Geophys Res Lett 35(22):L22106, doi: 10.1029/2008GL035767ADSGoogle Scholar
  231. Russell CT, Blanco-Cano X (2007) Ion-cyclotron wave generation by planetary ion pickup. J Atmos Solar Terr Phys 69:1723–1738Google Scholar
  232. Russell CT, Elphic RC (1978) Initial ISEE magnetometer results: Mag-netopause observations. Space Sci Rev 22(6):681–715ADSGoogle Scholar
  233. Russell CT, Huddleston DE, Khurana KK, Kivelson MG (1999) Observations at the inner edged of the Jovian current sheet: Evidence for a dynamic magnetosphere. Planet Space Sci 47:521–527ADSGoogle Scholar
  234. Russell CT, Kivelson MG, Kurth WS, Gurnett DA (2000) Implications of depleted flux tubes in the Jovian magnetosphere. Geophys Res Lett 27(19):3133–3136ADSGoogle Scholar
  235. Russell CT, Kivelson MG, Khurana KK (2005) Statistics of depleted flux tubes in the Jovian magnetosphere. Planet Space Sci 53(9):937–943, doi: 10.1016/j.pss.2005.04.007ADSGoogle Scholar
  236. Russell CT, Leisner JS, Arridge CS, Dougherty MK, Blanco-Cano X (2006) Nature of magnetic fluctuations in Saturn's middle magnetosphere. J Geophys Res 111:A12205, doi: 10.1029/2006JA011921ADSGoogle Scholar
  237. Russell CT, Jackman CM, Wei, HY Bertucci C, Dougherty MK (2008) Titan's influence on Saturnian substorm occurrence. Geophys Res Lett 35:L12105, doi: 1029/GL034080ADSGoogle Scholar
  238. Rymer AM et al. (2007a) Electron sources in Saturn's magnetosphere. J Geophys Res, doi: 10.1029/2006JA012017Google Scholar
  239. Rymer AM et al. (2007b) Plasma production and circulation in Saturn's (and Jupiter's?) magnetosphere. American Geophysical Union, Fall Meeting, San Francisco, Dec 2007, Abstract #P52B-04Google Scholar
  240. Rymer AM, Mauk BH, Hill TW, Paranicas C, Mitchell DG, Coates AJ, Young DT (2008) Electron circulation in Saturn's magnetosphere. J Geophys Res 113:A01201, doi: 10.1029/2007JA012589Google Scholar
  241. Samir U, Wright KH, Stone NH (1983) The expansion of plasma into a vacuum: Basic phenomena and processes and applications to space plasma physics Rev Geophys Space Phys 21:1631–1646ADSGoogle Scholar
  242. Sanchez ER, Mauk BH, Meng C-I (1993) Adiabatic vs. non-adiabatic particle distributions during convection surges Geophys Res Lett 20(3) 177– 180ADSGoogle Scholar
  243. Santos-Costa D, Blanc M, Maurice S, Bolton SJ (2003) Modeling the electron and proton radiation belts of Saturn. Geophys Res Lett 30(20):2059, doi: 10.1029/2003GL017972ADSGoogle Scholar
  244. Saur J, Strobel D (2005) Atmospheres and plasma interactions at Saturn's largest inner icy satellites Astrophys J 620:L115–L118, doi: 10.1086/428665ADSGoogle Scholar
  245. Saur J, Mauk BH, Kaßner A, Neubauer FM (2004) A model for the az-imuthal plasma velocity in Saturn's magnetosphere J Geophys Res 109:A05217, doi: 10.1029/2003JA010207Google Scholar
  246. Saur J, Neubauer FM, Schilling N (2007) Hemisphere coupling in Ence-ladus' asymmetric plasma interaction. J Geophys Res 112(A11), doi: 10.1029/2007JA012479Google Scholar
  247. Saur J, Schilling N, Neubauer FM, Strobel DF, Simon S, Dougherty MK, Russell CT, Pappalardo RT (2008) Evidence for temporal variability of Enceladus' gas jets: Modeling of Cassini observations. Geophys Res Lett 35(20), CiteID L20105, doi: 10.1029/ 2008GL03581Google Scholar
  248. Scarf FL, Gurnett DA, Kurth WS, Poynter RL (1982) Voyager-2 plasma wave observations at Saturn. Science 215:587ADSGoogle Scholar
  249. Scarf FL, Gurnett DA, Kurth WS, Poynter RL (1983) Voyager plasma wave measurements at Saturn. J Geophys Res 88:8971ADSGoogle Scholar
  250. Scarf FL, Frank LA, Gurnett DA, Lanzerotti LJ, Lazarus A, Sittler EC Jr (1984) Measurements of plasma, plasma waves and suprather-mal charged particles in Saturn's inner magnetosphere. In: Gehrels T (ed) Saturn, pp 318353. University of Arizona Press, TucsonGoogle Scholar
  251. Schulz M (1998) Particle drift and loss rates under strong pitch angle diffusion in Dungey's model magnetosphere. J Geophys Res 103:61–68MathSciNetADSGoogle Scholar
  252. Schulz M, Lanzerotti LJ (1974) Particle diffusion in the radiation belts. Springer, New YorkGoogle Scholar
  253. Scurry L, Russell CT (1991) Proxy studies of energy transfer in the magnetosphere. J Geophys Res 96:9541–9548ADSGoogle Scholar
  254. Scurry L, Russell CT, Gosling JT (1994) Geomagnetic activity and the beta dependence of the dayside reconnection rate. J Geophys Res 99:4,811–14,814Google Scholar
  255. Selesnick RS (1993) Micro- and macro- signatures of energetic charged particles in planetary magnetospheres Adv Space Res 13(10):221–230ADSGoogle Scholar
  256. Sergis N, Krimigis SM, Mitchell DG, Hamilton DC, Krupp N, Mauk BM, Roelof EC, Dougherty M (2007) Ring current at Saturn: Energetic particle pressure in Saturn's equatorial magnetosphere measured with Cassini/MIMI Geophys Res Lett 34:L09102, doi: 10.1029/2006GL029223Google Scholar
  257. Sergis N, Krimigis SM, Mitchell DG, Hamilton DC, Krupp N, Mauk BH, Roelof, EC, Dougherty MK (2009) Energetic particle pressure in Saturn's magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini. J Geophys Res 114:A02214, doi: 10.1029/2008JA013774Google Scholar
  258. Shemansky DE (1988) Energy branching in the Io plasma torus: The failure of neutral cloud theory. J Geophys Res 93(A3):1773–1784ADSGoogle Scholar
  259. Shemansky DE, Sandel BR (1982) The injection of energy into the Io plasma torus, J Geophys Res 87:219–229ADSGoogle Scholar
  260. Shemansky DE, Hall DT (1992) The distribution of atomic hydrogen in the magnetosphere of Saturn. J Geophys Res 97:(A4) 4143–4161ADSGoogle Scholar
  261. Shemansky DE, Matheson P, Hall DT, Hu H-Y, Tripp TM (1993) Detection of the hydroxyl radical in the Saturn magnetosphere. Nature 363:329–331ADSGoogle Scholar
  262. Shemansky DE et al. (2004) Cassini UVIS Observatory Phase Spectral, Imaging of the Saturn System COSPAR, ParisGoogle Scholar
  263. Shemansky DE, Liu X, Melin H (2009) The Saturn hydrogen plume. Planet Space Sci, in press, doi: 10.1016/j.pss.2009.05.002Google Scholar
  264. Simon S, Saur J, Neubauer FM, Motschmann U, Dougherty MK (2009) Plasma wake of Tethys: Hybrid simulations versus Cassini MAG data. Geophys Res Lett 36(4), CiteID L04108, doi: 10.1029/2008GL036943Google Scholar
  265. Siscoe GL, Summers D (1981) Centrifugally driven diffusion of Iogenic plasma. J Geophys Res 86:8471–8479ADSGoogle Scholar
  266. Siscoe GL, Eviatar A, Thorne RM, Richardson JD, Bagenal F, Sullivan JD (1981) Ring current impoundment of the Io plasma torus. J Geophys Res 86:8480–8484ADSGoogle Scholar
  267. Sittler EC Jr et al. (2006a) Cassini observations of Saturn's inner plas-masphere: Saturn orbit insertion results. Planet Space Sci 54:1197–1210ADSGoogle Scholar
  268. Sittler EC Jr, Johnson RE, Smith HT, Richardson JD, Jurac S, Moore M, Cooper JF, Mauk BH, Michael M, Paranicus C, Armstrong TP, Tsurutani B (2006b) Energetic nitrogen ions within the inner magnetosphere of Saturn. J Geophys Res 111:A09223Google Scholar
  269. Sittler EC et al. (2008) Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planet Space Sci 56:3–18ADSGoogle Scholar
  270. Sittler, EC Jr, Bertucci C, Coates A, Craven T, Dandouras I, Sheman-sky DE (2009) Energy deposition processes in Titan's upper atmosphere. In: Titan and Cassini/Huygens, in pressGoogle Scholar
  271. Smith EJ, Tsurutani BT (1983) Saturn's magnetosphere: Observations of ion cyclotron waves near the Dione L shell. J Geophys Res 88:7831–7836ADSGoogle Scholar
  272. Smith EJ, Davis L Jr, Jones DE, Colburn DS, Dyal P, Sonnet CP (1974) Magnetic field of Jupiter and its interaction with the solar wind. Science 183:305–306ADSGoogle Scholar
  273. Smith EJ, Davis L Jr, Jones DE, Coleman PJ Jr, Colburn DS, Dyal P, Sonett CP (1980) Saturn's magnetic field and magnetosphere. Science 207:407–410 (25 January), doi: 10.1126/science.207.4429.407ADSGoogle Scholar
  274. Smith HT, Johnson RE, Sittler EC, Shappirio M, Tucker OJ, Burger M, Crary FJ, McComas DJ, Young DT (2007) Enceladus: The likely dominant nitrogen source in Saturn's magnetosphere. Icarus 188:356–366ADSGoogle Scholar
  275. Smith HT, Shappirio M, Johnson RE, Reisenfeld D, Sittler EC, Crary FJ, McComas DJ, Young DT (2008) Enceladus: A source of ammonia products and molecular nitrogen for Saturn's magnetosphere. J Geophys Res 113:A11206, doi: 10.1029/2008JA013352ADSGoogle Scholar
  276. Smith RA, Bagenal F, Chang AF, Strobel DF (1988) On the energy crisis in the Io plasma torus. Geophys Res Lett 15:545ADSGoogle Scholar
  277. Sonnerup BUö, Paschmann G et al. (1981) Evidence for magnetic field reconnection at the Earth's magnetopause. J Geophys Res 86:10,049–10,067ADSGoogle Scholar
  278. Spencer JR, Calvin WM (2002) Condensed O2 on Europa and Callisto. Astronomical J 124(6):3400–3403ADSGoogle Scholar
  279. Spitzer L (1962) Physics of fully ionized gases, 2nd edn. Wiley-Interscience, Hoboken, NJGoogle Scholar
  280. Strobel DF (2008) Titan's hydrodynamically escaping atmosphere. Icarus 193(2):588–594ADSGoogle Scholar
  281. Summers D, Omura Y (2008) Ultra-relativistic acceleration of electrons in planetary magnetospheres. Geophys Res Lett 35, doi: 10.1029/2007GLos226Google Scholar
  282. Summers D, Thorne RM, Xiao F (1998) Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res 103:20,487–20,500ADSGoogle Scholar
  283. Thomsen MF, Van Allen JA (1980) Motion of trapped electrons and protons in Saturn's inner magnetosphere J Geophys Res 85:5831–5834ADSGoogle Scholar
  284. Thorne RM, Armstrong TP, Stone S, Williams DJ, McEntire RW, Bolton SJ, Gurnett DA, Kivelson MG (1997) Galileo evidence for rapid interchange transport in the Io torus. Geophys Res Lett 24:2131–2134ADSGoogle Scholar
  285. Tokar RL et al. (2005) Cassini observations of the thermal plasma in the vicinity of Saturn's main rings and the F and G rings. Geophys Res Lett 32:L14S04, doi: 10.1029/2005GL022690Google Scholar
  286. Tokar RL et al. (2006) The interaction of the atmosphere of Ence-ladus with Saturn's plasma. Science 311(5766):1409–1412, doi: 10.1126/science.1121061ADSGoogle Scholar
  287. Tokar RL et al. (2008) Cassini detection of water-group pick-up ions in the Enceladus torus. Geophys Res Lett 35:L14202, doi: 10.1029/ 2008GL034749ADSGoogle Scholar
  288. Tokar RL, Johnson RE, Thomsen MF, Wilson RJ, Young DT, Crary FJ, Coates AJ, Jones GH, Paty CS (2009) Cassini detection of Ence-ladus's cold water-group plume ionosphere. Geophys Res Lett 36, doi: 10.1029/2009GL038923Google Scholar
  289. Tseng W-L, Ip W-H, Johnson RE, Cassidy TA, Elrod Bob MK (2009) The structure and time variability of the ring atmosphere and ionosphere, Icarus, in press doi: 10.1016/j.icarus.2009.05.019Google Scholar
  290. Van Allen JA (1976) In: Gehrels T (ed) The high-energy particles of the Jovian magnetosphere, p 928. University of Arizona Press, TucsonGoogle Scholar
  291. Van Allen JA (1984) Energetic particles in the inner magnetosphere of Saturn. In: Gehrels T, Matthews MS (eds) Saturn, p 281. University of Arizona Press, TucsonGoogle Scholar
  292. Van Allen JA, Randall BA, Thomsen MF (1980a) Sources and sinks of energetic electrons and protons in Saturn's magnetosphere. J Geo-phys Res 85:5679–5694ADSGoogle Scholar
  293. Van Allen JA, Thomsen MF, Randall BA (1980b) The energetic charged particle absorption signature of Mimas J Geophys Res 85:5709–5718ADSGoogle Scholar
  294. Vasyli ūnas VM (1983) Plasma distribution and flow In: Dessler AJ (ed) Physics of the Jovian magnetosphere, pp 395–453. Cambridge University Press, LondonGoogle Scholar
  295. Vasyliūnas VM (1994) Role of the plasma acceleration time in the dynamics of the Jovian magnetosphere. Geophys Res Lett 21:401–404Google Scholar
  296. Vasyliūnas VM (2008) Comparing Jupiter and Saturn: Dimensionless input rates from plasma sources within the magnetosphere. An Geo-phys 26:1341–1343, doi: 2008AnGeo.26.1341VADSGoogle Scholar
  297. Waite JH Jr et al. (2006) Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311:1419–1422ADSGoogle Scholar
  298. Walker RJ, Russell CT (1985) Flux transfer events at the Jovian mag-netopause. J Geophys Res 90:7397–7404ADSGoogle Scholar
  299. Walt M (1994) Diffusion in L coordinate or radial diffusion In: Dessler AJ, Houghton JT Rycroft MJ (eds) Introduction to geomagnetically trapped radiation, 1st edn. pp 132–146 Cambridge University Press, Cambridge, Great BritainGoogle Scholar
  300. Wang YL, Russell CT, Raeder J (2001) The Io mass-loading disk: Model calculations. J Geophys Res 106:26,243–26,260ADSGoogle Scholar
  301. Wang Z, Gurnett DA, Kurth WS, Ye S, Fischer G, Mitchell DG, Russell CT, Leisner JS (2009) Narrowband radio emissions and their relationship to rotating plasma clouds and magnetic disturbances at Saturn. J Geophys Res, submittedGoogle Scholar
  302. Warwick JW et al. (1981) Planetary radio astronomy observations from Voyager 1 near Saturn. Science 212:239ADSGoogle Scholar
  303. Warwick JW et al. (1982) Planetary radio astronomy observations from Voyager 2 near Saturn. Science 215:582ADSGoogle Scholar
  304. Whang YC (1969) Field and plasma in the lunar wake. Phys Rev, Second Ser 186:143–150ADSGoogle Scholar
  305. Whang YC, Ness NF (1970) Observations and interpretation of the Lunar Mach Cone J Geophys Res 75:6002–6009ADSGoogle Scholar
  306. Wilson, RJ, Tokar RL, Henderson MG, Hill TW, Thomsen MF, Pontius DH J (2008) Cassini plasma spectrometer thermal ion measurements in Saturn's inner magnetosphere. J Geophys Res. 113: A12218, doi: 10.1029/2008JA013486ADSGoogle Scholar
  307. Wolf RA (1983) The quasi-static (slow-flow) region of the magnetosphere. In: Carovillano RL, Forbes JM (eds) Solar-terrestrial physics, pp 303– 368. Reidel, Norwood, MAGoogle Scholar
  308. Wu H, Hill TW, Wolf RA, Spiro RW (2007a) Numerical simulation of fine structure in the Io plasma torus produced by the centrifugal interchange instability. J Geophys Res 112(A2), doi: 10.1029/2006JA012032Google Scholar
  309. Wu H, Hill TW, Wolf RA, Spiro RW (2007b) Numerical simulation of Coriolis effects on the interchange instability in Saturn's magnetosphere. Eos Trans. AGU 88, Fall Meet. Suppl., Abstract P43A–1006Google Scholar
  310. Xin L, Gurnett DA, Santolik O, Kurth WS, Hospodarsky GB (2006) Whistler-mode auroral hiss emissions observed near Saturn's B ring. J Geophys Res 111:A06214, doi: 10.1029/2005JA011432Google Scholar
  311. Ye S, Gurnett DA, Fischer G, Cecconi B, Menietti JD, Kurth WS, Wang Z, Hospodarsky GB, Zarka P, Lecacheux A (2009) Source location of narrowband radio emissions detected at Saturn. J Geophys Res 114:A06219, doi: 10.1029/2008JA013855Google Scholar
  312. Yelle RV, Cui J, Müller-Wodarg ICF (2008) Methane escape from Titan's atmosphere. J Geophys Res 113:E10003, doi: 10.1029/2007JE003031ADSGoogle Scholar
  313. Young DT et al. (2005) Composition and dynamics of plasma in Saturn's magnetosphere. Science 307:1262–1266ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • B. H. Mauk
    • 1
  • D. C. Hamilton
    • 2
  • T. W. Hill
    • 3
  • G. B. Hospodarsky
    • 4
  • R. E. Johnson
    • 5
  • C. Paranicas
    • 1
  • E. Roussos
    • 6
  • C. T. Russell
    • 7
  • D. E. Shemansky
    • 8
  • E. C. SittlerJr.
    • 9
  • R. M. Thorne
    • 10
  1. 1.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  2. 2.Department of PhysicsUniversity of MarylandCollege ParkUSA
  3. 3.Physics and Astronomy DepartmentRice UniversityHoustonUSA
  4. 4.Department of Physics and AstronomyUniversity of IowaIowa CityUSA
  5. 5.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  6. 6.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  7. 7.Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA
  8. 8.Planetary and Space Science DivisionSpace Environment TechnologiesPasadenaUSA
  9. 9.NASA Goddard Space Flight CenterGreenbeltUSA
  10. 10.Department of Atmospheric and Oceanic SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations