Non-Additive Degrees of Belief

  • Rolf Haenni
Part of the Synthese Library book series (SYLI, volume 342)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merriam-Webster Online Dictionary. http://www.m-w.com
  2. Oxford English Dictionary. http://dictionary.oed.com
  3. Anonymous Author: A calculation of the credibility of human testimony. Philosophical Transactions of the Royal Society 21, 359–365 (1699)Google Scholar
  4. Barnett, J.A.: Computational methods for a mathematical theory of evidence. In: P.J. Hayes (ed.) IJCAI’81, 7th International Joint Conference on Artificial Intelligence, pp. 868–875. Vancouver, Canada (1981)Google Scholar
  5. Bernoulli, J.: Ars Conjectandi. Thurnisiorum, Basel (1713)Google Scholar
  6. Black, D.: Theory of Committees and Elections. Cambridge University Press, Cambridge, USA (1958)Google Scholar
  7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge, UK (2001)Google Scholar
  8. Boole, G.: The Laws of Thought. Walton and Maberley, London (1854)Google Scholar
  9. Bottema, O.: On the area of a triangle in barycentric coordinates. Crux Mathematicorum 8, 228–231 (1982)Google Scholar
  10. Daniel, M.: Algebraic structures related to Dempster-Shafer theory. In: B. Bouchon-Meunier, R.R. Yager, L.A. Zadeh (eds.) IPMU’94, 5th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, LNCS 945, pp. 51–61. Paris, France (1994)Google Scholar
  11. de Finetti, B.: La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré 7(1), 1–68 (1937)Google Scholar
  12. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)CrossRefGoogle Scholar
  13. Dempster, A.P.: A generalization of Bayesian inference. Journal of the Royal Statistical Society 30(2), 205–247 (1968)Google Scholar
  14. Dempster, A.P.: The Dempster-Shafer calculus for statisticians. International Journal of Approximate Reasoning 48(2), 365–377 (2008)CrossRefGoogle Scholar
  15. Douven, I.: Decision theory and the rationality of further deliberation. Economics and Philosophy 18(2), 303–328 (2002)CrossRefGoogle Scholar
  16. Doyle, A.C.: The sign of four. Lippincott’s Magazine (1890a)Google Scholar
  17. Doyle, A.C.: A study in scarlet, pt. 2. Beeton’s Christmas Annual (1890b)Google Scholar
  18. E. H. Shortliffe, Buchanan G.B.: A model of inexact reasoning in medicine. Mathematical Biosciences 351–379(23) (1975)CrossRefGoogle Scholar
  19. Edgeworth, F.Y.: Probability. In: H. Chisholm (ed.) Encyclopædia Britannica, vol. 22, 11th edn., pp. 376–403. University of Cambridge, Cambridge, UK (1911)Google Scholar
  20. Edman, M.: Adding independent pieces of evidence. In: Modality, Morality and other Problems of Sense and Nonsense: Essays dedicated to Sören Halldén, pp. 180–191. CWK Gleerups, Lund, Sweden (1973)Google Scholar
  21. Ekelöf, P.O.: Rättegång, 6th edn. Norstedts Juridik AB, Stockholm, Sweden (1992)Google Scholar
  22. Ellsberg, D.: Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics 75, 643–669 (1961)CrossRefGoogle Scholar
  23. Erickson, G.W.: Dictionary of Paradox. University Press of America, Lanham, MD (1998)Google Scholar
  24. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, vol. I, 2nd edn. Addison-Wesley, Tucson, A2 (1963)Google Scholar
  25. Gärdenfors, P., Hansson, B., Sahlin, N.E. (eds.): Evidentiary Value: Philosophical, Judicial and Psychological Aspects of a Theory. CWK Gleerups, Lund, Sweden (1983)Google Scholar
  26. Gilboa, I.: Expected utility with purely subjective non-additive probabilities. Journal of Mathematical Economics 16, 65–88 (1987)CrossRefGoogle Scholar
  27. Ginsberg, M.: Non-monotonic reasoning using Dempster’s rule. In: R.J. Brachman (ed.) AAAI’84, 4th National Conference on Artificial Intelligence, pp. 112–119. Austin, USA (1984)Google Scholar
  28. Gustason, W.: Reasoning from Evidence: Inductive Logic. Prentice Hall (1998)Google Scholar
  29. Hacking, I.: The Emergence of Probability. Cambridge University Press, Cambridge, UK (1975)Google Scholar
  30. Hacking, I.: An Introduction to Probability and Inductive Logic. Cambridge University Press, Cambridge, UK (2001)Google Scholar
  31. Haenni, R.: Are alternatives to Dempster’s rule alternatives? – Comments on “About the belief function combination and the conflict management problem”. International Journal of Information Fusion 3(3), 237–241 (2002)CrossRefGoogle Scholar
  32. Haenni, R.: Ignoring ignorance is ignorant. Tech. rep., Center for Junior Research Fellows. University of Konstanz, Germany (2003)Google Scholar
  33. Haenni, R.: Ordered valuation algebras: a generic framework for approximating inference. International Journal of Approximate Reasoning 37(1), 1–41 (2004)CrossRefGoogle Scholar
  34. Haenni, R.: Shedding new light on Zadeh’s criticism of Dempster’s rule of combination. In: FUSION’05, 8th International Conference on Information Fusion, vol. 2, pp. 879–884. Philadelphia, USA (2005)Google Scholar
  35. Haenni, R.: Towards a unifying theory of logical and probabilistic reasoning. In: F.B. Cozman, R. Nau, T. Seidenfeld (eds.) ISIPTA’05, 4th International Symposium on Imprecise Probabilities and Their Applications, pp. 193–202. Pittsburgh, USA (2005)Google Scholar
  36. Haenni, R.: Using probabilistic argumentation for key validation in public-key cryptography. International Journal of Approximate Reasoning 38(3), 355–376 (2005)CrossRefGoogle Scholar
  37. Haenni, R.: Uncover Dempster’s rule where it is hidden. In: FUSION’06, 9th International Conference on Information Fusion, contribution No. 251. Florence, Italy (2006)Google Scholar
  38. Haenni, R.: Probabilistic argumentation. Journal of Applied Logic (2008)Google Scholar
  39. Haenni, R., Hartmann, S.: A general model for partially reliable information sources. In: P. Svensson, J. Schubert (eds.) FUSION’04, 7th International Conference on Information Fusion, vol. I, pp. 153–160. Stockholm, Sweden (2004)Google Scholar
  40. Haenni, R., Hartmann, S.: Modeling partially reliable information sources: a general approach based on Dempster-Shafer theory. International Journal of Information Fusion 7(4), 361–379 (2006)CrossRefGoogle Scholar
  41. Haenni, R., Kohlas, J., Lehmann, N.: Probabilistic argumentation systems. In: D.M. Gabbay, P. Smets (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5: Algorithms for Uncertainty and Defeasible Reasoning, pp. 221–288. Kluwer Academic Publishers, Dordrecht, Netherlands (2000)Google Scholar
  42. Haenni, R., Lehmann, N.: Building argumentation systems on set constraint logic. In: B. Bouchon-Meunier, R.R. Yager, L.A. Zadeh (eds.) Information, Uncertainty and Fusion, pp. 393–406. Kluwer Academic Publishers, Dordrecht, Netherlands (2000)Google Scholar
  43. Haenni, R., Lehmann, N.: Probabilistic argumentation systems: a new perspective on Dempster-Shafer theory. International Journal of Intelligent Systems, Special Issue on the Dempster-Shafer Theory of Evidence 18(1), 93–106 (2003)Google Scholar
  44. Hájek, P., Havránek, T., Jiroušek, R.: Uncertain Information Processing in Expert Systems. CRC Press, Boca Raton, USA (1992)Google Scholar
  45. Hájek, P., Valdés, J.J.: Generalized algebraic approach to uncertainty processing in rule-based expert systems (dempsteroids). Computers and Artificial Intelligence 10, 29–42 (1991)Google Scholar
  46. Harrod, R.: Foundations of Inductive Logic. Macmillan, London (1974)Google Scholar
  47. Hawthorne, J.: Degree-of-belief and degree-of-support: Why Bayesians need both notions. Mind 114(454), 277–320 (2005)CrossRefGoogle Scholar
  48. Hawthorne, J.: Inductive logic. In: E.N. Zalta (ed.) The Stanford Encyclopedia of Philosophy. Center for the Study of Language and Information, Stanford University, USA (2005). http://plato.stanford.edu/archives/sum2005/entries/logic-indu% ctive/ Google Scholar
  49. Helton, J.C.: Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. Journal of Statistical Computation and Simulation 57, 3–76 (1997)CrossRefGoogle Scholar
  50. Jonczy, J., Haenni, R.: Credential networks: a general model for distributed trust and authenticity management. In: A. Ghorbani, S. Marsh (eds.) PST’05, 3rd Annual Conference on Privacy, Security and Trust, pp. 101–112. St. Andrews, Canada (2005)Google Scholar
  51. Jøsang, A.: Artificial reasoning with subjective logic. In: A.C. Nayak, M. Pagnucco (eds.) 2nd Australian Workshop on Commonsense Reasoning. Perth, Australia (1997)Google Scholar
  52. Jøsang, A.: A logic for uncertain probabilities. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9(3), 279–311 (2001)Google Scholar
  53. Jøsang, A.: The consensus operator for combining beliefs. Artificial Intelligence 141(1), 157–170 (2002)CrossRefGoogle Scholar
  54. Jøsang, A., Bondi, V.A.: Legal reasoning with subjective logic. Artificial Intelligence and Law 8(4), 289–315 (2000)CrossRefGoogle Scholar
  55. Katzner, D.W.: Time, Ignorance, and Uncertainty in Economic Models. University of Michigan Press, Ann Arbor, M1 (1998)Google Scholar
  56. Kelsey, D., Quiggin, J.: Theories of choice under ignorance and uncertainty. Journal of Economic Surveys 6(2), 133–53 (1992)CrossRefGoogle Scholar
  57. Keynes, J.M.: A Treatise of Probability. Macmillan, London (1921)Google Scholar
  58. Khosla, D.: Method and apparatus for joint kinematic and feature tracking using probabilistic argumentation. United States Patent No. 7026979 (2006). http://www.wikipatents.com/ 7026979.html
  59. Khosla, D., Chen, Y.: Joint kinematic and feature tracking using probabilistic argumentation. In: FUSION’03, 6th International Conference on Information Fusion, vol. I, pp. 11–16. Cairns, Australia (2003)Google Scholar
  60. Kohlas, J.: Information Algebras: Generic Stuctures for Inference. Springer, London (2003)Google Scholar
  61. Kohlas, J.: Probabilistic argumentation systems: A new way to combine logic with probability. Journal of Applied Logic 1(3–4), 225–253 (2003)CrossRefGoogle Scholar
  62. Kohlas, J., Monney, P.A.: Propagating belief functions through constraint systems. International Journal of Approximate Reasoning 5, 433–461 (1991)CrossRefGoogle Scholar
  63. Kohlas, J., Monney, P.A.: A Mathematical Theory of Hints – An Approach to the Dempster-Shafer Theory of Evidence, Lecture Notes in Economics and Mathematical Systems, vol. 425. Springer (1995)Google Scholar
  64. Kohlas, J., Shenoy, P.P.: Computation in valuation algebras. In: D.M. Gabbay, P. Smets (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5: Algorithms for Uncertainty and Defeasible Reasoning, pp. 5–39. Kluwer Academic Publishers, Dordrecht, Netherlands (2000)Google Scholar
  65. Kohlas, R.: Decentralized trust evaluation and public-key authentication. Ph.D. thesis, University of Bern, Switzerland (2007)Google Scholar
  66. Kohlas, R., Jonczy, J., Haenni, R.: A trust evaluation method based on logic and probability theory. In: Y. Karabulut, J. Mitchell, P. Herrmann, C.D. Jensen (eds.) IFIPTM’08, 2nd Joint iTrust and PST Conferences on Privacy Trust Management and Security, pp. 17–32. Trondheim, Norway (2008)Google Scholar
  67. Koopman, B.O.: The axioms and algebra of intuitive probability. Annals of Mathematics and Artificial Intelligence 41, 269–292 (1940)Google Scholar
  68. Kyburg, H.E.: Probability and Inductive Logic. Macmillan, New York, USA (1970)Google Scholar
  69. Kyburg, H.E.: Higher order probabilities and intervals. International Journal of Approximate Reasoning 2, 195–209 (1988)CrossRefGoogle Scholar
  70. Lambert, J.H.: Neues Organon oder Gedanken über die Erforschung und Bezeichnung des Wahren und dessen Unterscheidung vom Irrtum und Schein. Johann Wendler, Leipzig (1764)Google Scholar
  71. Laplace, P.S.: Théorie Analytique des Probabilités, 3ème edn. Courcier, Paris (1820)Google Scholar
  72. Laskey, K.B., Lehner, P.E.: Assumptions, beliefs and probabilities. Artificial Intelligence 41(1), 65–77 (1989)CrossRefGoogle Scholar
  73. List, C.: On the significance of the absolute margin. British Journal for the Philosophy of Science 55(3), 521–544 (2004)CrossRefGoogle Scholar
  74. List, C., Goodin, R.E.: Epistemic democracy: Generalizing the Condorcet jury theorem. Journal of Political Philosophy 9(3), 277–306 (2001)CrossRefGoogle Scholar
  75. Marquis de Condorcet: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. L’Imprimerie Royale, Paris, France (1785)Google Scholar
  76. Matheron, G.: Random Sets and Integral Geometry. John Wiley and Sons, New York (1975)Google Scholar
  77. Nguyen, H.T.: On random sets and belief functions. Journal of Mathematical Analysis and Applications 63, 531–542 (1978)CrossRefGoogle Scholar
  78. Nguyen, H.T., Walker, E.A.: On decision making using belief functions. In: R.R. Yager, J. Kacprzyk, M. Fedrizzi (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 311–330. John Wiley and Sons, New York, USA (1994)Google Scholar
  79. Older, W., Vellino, A.: Constraint arithmetic on real intervals. In: F. Benhamou, A. Colmerauer (eds.) Constraint Logic Programming: Selected Research, pp. 175–196. MIT Press (1993)Google Scholar
  80. Paris, J.: The Uncertain Reasoner’s Companion – a Mathematical Perspective. No. 39 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, UK (1994)Google Scholar
  81. Pearl, J.: How to do with probabilities what people say you can’t. In: CAIA’85, 2nd IEEE Conference on AI Applications, pp. 6–12. Miami, USA (1985)Google Scholar
  82. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo, USA (1988)Google Scholar
  83. Pearl, J.: Reasoning with belief functions: An analysis of compatibility. International Journal of Approximate Reasoning 4(5–6), 363–389 (1990)CrossRefGoogle Scholar
  84. Pearson, K.: The History of Statistics in the 17th and 18th Centuries against the Changing Background of Intellectual, Scientific and Religious Thought: Lectures by Karl Pearson given at University College (London) during the Academic Sessions 1921–1933. Lubrecht & Cramer, London, U.K. (1978)Google Scholar
  85. Picard, J., Savoy, J.: Using probabilistic argumentation systems to search and classify web sites. IEEE Data Engineering Bulletin 24(3), 33–41 (2001)Google Scholar
  86. Ramsey, F.P.: Truth and probability. In: R.B. Braithwaite (ed.) The Foundations of Mathematics and other Logical Essays, chap. 7, pp. 156–198. Routledge, London, U.K. (1926)Google Scholar
  87. Rogova, G.L., Scott, P.D., Lollett, C.: Higher level fusion for post-disaster casualty mitigation operations. In: FUSION’05, 8th International Conference on Information Fusion, contribution No. C10-1, vol. 2. Philadelphia, USA (2005)Google Scholar
  88. Rogova, G.L., Scott, P.D., Lollett, C., Mudiyanur, R.: Reasoning about situations in the early post-disaster response environment. In: FUSION’06, 9th International Conference on Information Fusion, contribution No. 211. Florence, Italy (2006)Google Scholar
  89. Ruspini, E.H.: The logical foundations of evidential reasoning. Tech. Rep. 408, SRI International, AI Center, Menlo Park, USA (1986)Google Scholar
  90. Ruspini, E.H., Lowrance, J., Strat, T.: Understanding evidential reasoning. International Journal of Approximate Reasoning 6(3), 401–424 (1992)CrossRefGoogle Scholar
  91. Sahlin, N.E., Rabinowicz, W.: The evidentiary value model. In: D.M. Gabbay, P. Smets (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 1: Quantified Representation of Uncertainty and Imprecision, pp. 247–266. Kluwer Academic Publishers, Dordrecht, Netherlands (1998)Google Scholar
  92. Sarin, R.H., Wakker, P.P.: A simple axiomatization of nonadditive expected utility. Econometrica 60, 1255–1272 (1992)CrossRefGoogle Scholar
  93. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57(3), 571–587 (1989)CrossRefGoogle Scholar
  94. Schum, D.A.: Probability and the process of discovery, proof, and choice. Boston University Law Review 66(3–4), 825–876 (1986)Google Scholar
  95. Shackle, G.L.S.: A non-additive measure of uncertainty. Review of Economic Studies 17(1), 70–74 (1949)CrossRefGoogle Scholar
  96. Shackle, G.L.S.: Expectation in Economics, 2 edn. Cambridge University Press, Cambridge, UK (1952)Google Scholar
  97. Shackle, G.L.S.: The logic of surprise. Economica, New Series 20(78), 112–117 (1953)CrossRefGoogle Scholar
  98. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ (1976)Google Scholar
  99. Shafer, G.: Non-additive probabilities in the work of Bernoulli and Lambert. Archive for History of Exact Sciences 19, 309–370 (1978)CrossRefGoogle Scholar
  100. Shafer, G.: Perspectives on the theory and practice of belief functions. International Journal of Approximate Reasoning 4(5–6), 323–362 (1990)CrossRefGoogle Scholar
  101. Shafer, G.: The early development of mathematical probability. In: I. Grattan-Guinness (ed.) Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, pp. 1293–1302. Routledge, London, U.K. (1993)Google Scholar
  102. Shafer, G.: The significance of Jacob Bernoulli’s Ars Conjectandi for the philosophy of probability today. Journal of Econometrics 75, 15–32 (1996)CrossRefGoogle Scholar
  103. Shenoy, P.P.: Valuation-based systems: A framework for managing uncertainty in expert systems. In: L.A. Zadeh, J. Kacprzyk (eds.) Fuzzy Logic for the Management of Uncertainty, pp. 83–104. John Wiley and Sons, New York, USA (1992)Google Scholar
  104. Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function propagation. In: R.D. Shachter, T.S. Levitt, J.F. Lemmer, L.N. Kanal (eds.) UAI’88, 4th Conference on Uncertainty in Artificial Intelligence, pp. 169–198. Minneapolis, USA (1988)Google Scholar
  105. Smarandache, F., Dezert, J.: Advances and Applications of DSmT for Information Fusion. American Research Press (2004)Google Scholar
  106. Smets, P.: The combination of evidence in the Transferable Belief Model. IEEE Pattern Analysis and Machine Intelligence 12, 447–458 (1990)CrossRefGoogle Scholar
  107. Smets, P.: Probability of provability and belief functions. Journal de la Logique et Analyse 133, 177–195 (1991)Google Scholar
  108. Smets, P.: Quantifying beliefs by belief functions: An axiomatic justification. In: R. Bajcsy (ed.) IJCAI’93: 13th International Joint Conference on Artificial Intelligence, pp. 598–603. Chambéry, France (1993)Google Scholar
  109. Smets, P.: Analyzing the combination of conflicting belief functions. Information Fusion 8(4), 387–412 (2007)CrossRefGoogle Scholar
  110. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)CrossRefGoogle Scholar
  111. Smith, C.A.B.: Consistency in statistical inference and decision. Journal of the Royal Statistical Society 23, 31–37 (1961)Google Scholar
  112. Smithson, M.: Ignorance and Uncertainty. Springer (1988)Google Scholar
  113. Spohn, W.: Ordinal conditional functions: A dynamic theory of epistemic states. In: W.L. Harper, B. Skyrms (eds.) Causation in Decision, Belief Change, and Statistics, vol. II, pp. 105–134. Kluwer Academic Publishers (1988)Google Scholar
  114. Spohn, W.: Survey of ranking theory. In: F. Huber, C. Schmidt-Petri (eds.) Degrees of Belief. Springer (2008)Google Scholar
  115. Uchii, S.: Sherlock Holmes and probabilistic induction (1991). http://www1.kcn.ne.jp/h-uchii/ Holmes/index.html
  116. Van Fraassen, B.C.: Laws and Symmetry. Oxford University Press, Oxford, U.K. (1990)Google Scholar
  117. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Monographs on Statistics and Applied Probability 42. Chapman and Hall, London, U.K. (1991)Google Scholar
  118. Walley, P., Fine, T.L.: Towards a frequentist theory of upper and lower probability. Annals of Statistics 10, 741–761 (1982)CrossRefGoogle Scholar
  119. Williamson, J.: Objective Bayesian nets. In: S.N. Artëmov, H. Barringer, A.S. d’Avila Garcez, L.C. Lamb, J. Woods (eds.) We Will Show Them! Essays in Honour of Dov Gabbay, vol. 22, pp. 713–730. College Publications (2005)Google Scholar
  120. Wilson, N.: Uncertain linear constraints. In: R. López de Mántaras, L. Saitta (eds.) ECAI’04: 16th European Conference on Artificial Intelligence, pp. 231–235. Valencia, Spain (2004)Google Scholar
  121. Yager, R.R., Liping, L. (eds.): Classic Works of the Dempster-Shafer Theory of Belief Functions, Studies in Fuzziness and Soft Computing, vol. 219. Springer (2008)Google Scholar
  122. Yen, J.: Can evidence be combined in the Dempster-Shafer theory? International Journal of Approximate Reasoning 2(3), 346–347 (1988)Google Scholar
  123. Zadeh, L.A.: On the validity of Dempster’s rule of combination of evidence. Tech. Rep. 79/24, University of California, Berkely (1979)Google Scholar
  124. Zadeh, L.A.: A mathematical theory of evidence (book review). AI Magazine 55(81–83) (1984)Google Scholar
  125. Zadeh, L.A.: A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Magazine 7(2), 85–90 (1986)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Rolf Haenni
    • 1
  1. 1.University of Bern Institute of Computer Science and Applied Mathematics Neubrückstrasse 10Switzerland

Personalised recommendations