Advertisement

Overview of Seismic Hazard Studies in Tunis City

  • Najla Bouden-Romdhane
  • Pierre Mechler
  • Anne-Marie Duval
  • Sameh Anibi
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract Tunis City (roughly 30,000 inhabitants per km2) is developing in a subsiding sedimentary basin, 350 m deep, which is occupied by loose Quaternary deposits over a more rigid Eocene bedrock with a strong estimated impedance transition between the subsurface and the deep layers. Huge investment projects are initiated all around the edges of the Lac de Tunis and cover more than 25 millions square meters of buildings, towers, tourist complexes, bridges and yacht embankments. Due to this socio economic context, a comprehensive seismic risk analysis was conducted since a decade at the Tunis National School of Engineers with a special emphasis on site effects, liquefaction potential assessment and vulnerability studies of two pilot built areas located in the downtown zone and in the old Medina. All the collected and produced data are compiled in a geo-referenced database management system (GIS).

This chapter presents a broad coverage of the seismic site response analyses and liquefaction potential studies conducted in Tunis City by means of experimental techniques and numerical modelling.

Keywords

Site effects Transfer function Signal-to-noise ratio Optimum Wiener filter 1D numerical modelling Liquefaction potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AFPS (1993) Guide méthodologique pour la réalisation d'études de microzonage sismique, Saint-Rémy-lès-ChevreuseGoogle Scholar
  2. Anibi S, Bouden-Romdhane N (2007) Contribution à l'estimation du risque de liquéfaction du sous sol de Tunis. Colloque international “Sols et matériaux à problèmes”, 09–11 Février 2007, TunisieGoogle Scholar
  3. Bardet J P, Tobita T (2001) NERA: A computer program for nonlinear earthquake site response analysis of layered soils deposits. University of South California, Department of Civil Engineering, 40pGoogle Scholar
  4. Bardet J P, Ichii K, Lin C H (2000) EERA: A computer program for equivalent-linear earthquake site response analysis of layered soils deposits. University of South California, Department of Civil Engineering, 38pGoogle Scholar
  5. Ben Ayed N, Viguier C (1978) Observations sur la tectonique récente du Néogène continental de Tunis. Bull. Soc. Sc. Naturelles de Tunisie, T13, 105–108Google Scholar
  6. Bouden-Romdhane N (2002) Contribution au Microzonage Sismique de Tunis, Evaluation de l'Effet de Site, Sc Thesis, Ecole Nationale d'Ingénieurs de Tunis, 320pGoogle Scholar
  7. Bouden-Romdhane N, Mechler P (2002) Seismic site effect, evaluation methods: application to the city of Tunis. Bull. Eng. Geol. Env., 61:269–281CrossRefGoogle Scholar
  8. Bouden-Romdhane N, Mechler P, Duval A M, Menerould J P, Vidal S (2000) Microzoning the city of Tunis, using both background noise and weak motions. Proc.12th World Conf. Earthq. Eng., Auckland, New Zealand, 8pGoogle Scholar
  9. Bousquet J C, Philip H (1981) Les caractéristiques de la néotectonique en méditerranée occidentale- Sedimentary basins of mediterranean margins. F.C.Wezel, Ed., C.N.R., Italian Project of oceanography, Tecnoprint, Bologne, pp. 389–405Google Scholar
  10. Boutib L (1998) Tectonique de la région du Grand Tunis: évolution géométrique et cinématique des blocs structuraux du Mésozoîque à l'Actuel (Atlas nord oriental de Tunisie). Thèse de Doctorat de l'Université Tunis II, Faculté des Sciences de Tunis, 170pGoogle Scholar
  11. Dlala M, Rebaî S (1994) Relation compression-extension Miocène supérieur à Quaternaire en Tunisie: implication sismotectonique. C. R. Acad. Sci. Paris, 319, série II, 945–950Google Scholar
  12. Kanoun F (1981) Propriétés dynamiques de la vase de Tunis, Ph.D. thesis, Ecole Nationale d'Ingénieurs de Tunis, TunisiaGoogle Scholar
  13. Ksentini A (2004) Apport des systèmes d'information géographique dans l'analyse et la gestion du risque sismique. mémoire de mastère à l'ENIT, 91pGoogle Scholar
  14. Mari J L, Glangeaud F, Coppens F (1997) Traitement du signal pour géologues et géophysiciens. Editions Technip, Paris, 460pGoogle Scholar
  15. Pecker A (1984) Dynamique Des Sols. Edition de l'Ecole Des Ponts et ChausséesGoogle Scholar
  16. Piementa J (1959) Le cycle pliocène-actuelle dans les bassins paralyques de Tunis. Thèse de la Faculté des Sciences de Paris et Mémoire de la Société Géologique de France, 85, 180pGoogle Scholar
  17. PHRIE (Port and Harbour Research Institute, Editor) (1997) Handbook on liquefaction remediation, A.A.Balkema, Rotterdam, The NetherlandsGoogle Scholar
  18. Sassi A (2004) Simulation numérique unidimensionnelle de l'effet de site sismique et son application au micro zonage de la ville de Tunis. mémoire de diplôme d'études approfondis, ENIT, 69pGoogle Scholar
  19. Seed R B, Cetin R E S, Moss A, Kammerer J, Wu J M, Pestana M F, Riemer R B, Sancio J D, Bray R E, Kayen R E, Faris A (2003) Recent advances in soil liquefaction engineering: A unified and consistent framework. 26th Annual ASCE Los Angeles Geotechnical Spring Seminar, Keynote Presentation, H.M.S. Queen Mary, Long Beach, CaliforniaGoogle Scholar
  20. Vucetic M, Dobry R (1991) Effect of Soil Plasticity on Cyclic Response, Journal of the Geotech-nical Division, ASCE, Vol. 111, No. 1, 89–107CrossRefGoogle Scholar
  21. Youd T L, Perkins D M (1978) Mapping liquefaction-induced ground failure potential. Journal of the Geotechnical Engineering Division 104, 433–446Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Najla Bouden-Romdhane
    • 1
  • Pierre Mechler
    • 2
  • Anne-Marie Duval
    • 3
  • Sameh Anibi
    • 1
  1. 1.Department of Civil EngineeringEcole Nationale d'Ingénieurs de TunisTunisTunisia
  2. 2.Département de Géophysique AppliqueeUniversitéParis 6
  3. 3.CETE méditerranéeNiceFrance

Personalised recommendations