Geometric Phases In Open Multi-Level Systems

  • S. Syzranov
  • Y. Makhlin
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

We analyze the geometric phases in quantum systems coupled to a dissi-pative environment, when the Hamiltonian of the system, and possibly its coupling to the environment, are slowly varied in time. We find that the coupling to the environment modifies the values of the geometric phases and also induces a geometric contribution to dephasing and relaxation. For a multi-level system with equal level splittings, coupling to the environment makes the dynamics more complex, and we analyze the interplay between various geometric phases in such situations.


geometric phases multi-level system relaxation dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.V. Berry, Proc. R. Soc. Lond. 392, 45 (1984)zbMATHADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Shapere, F. Wilczek (eds.), Geometric phases in physics (World Scientific, 1989)Google Scholar
  3. 3.
    D. Gamliel, J.H. Freed, Phys. Rev. A 39, 3238 (1989)CrossRefADSGoogle Scholar
  4. 4.
    D. Ellinas, S.M. Barnett, M.A. Dupertuis, Phys. Rev. A 39, 3228 (1989)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    A. Carollo, I. Fuentes-Guridi, M.F. Santos, V. Vedral, Phys. Rev. Lett. 90, 160402 (2003)CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    K.M. Fonseca Romero, A.C. Aguiar Pinto, M.T. Thomaz, Physica A 307, 142 (2002)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    F. Gaitan, Phys. Rev. A 58, 1665 (1998)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    J.E. Avron, A. Elgart, Phys. Rev. A 58, 4300 (1998)CrossRefADSGoogle Scholar
  9. 9.
    R.S. Whitney, Y. Gefen, Phys. Rev. Lett. 90, 190402 (2003)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    G. De Chiara, G.M. Palma, Phys. Rev. Lett. 91, 090404 (2003)CrossRefGoogle Scholar
  11. 11.
    R.S. Whitney, Yu. Makhlin, A. Shnirman, Y. Gefen, Phys. Rev. Lett. 94, 070407 (2005)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    S. Syzranov, Yu. Makhlin. in preparationGoogle Scholar
  13. 13.
    F. Bloch, Phys. Rev. 70, 460 (1946)CrossRefADSGoogle Scholar
  14. 14.
    F. Bloch, Phys. Rev. 105, 1206 (1957)zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    A.G. Redfield, IBM J. Res. Dev. 1, 19 (1957)CrossRefGoogle Scholar
  16. 16.
    Yu. Makhlin, G. Schön, A. Shnirman, in New Directions in Mesoscopic Physics (Towards Nanoscience), ed. by R. Fazio, V.F. Gantmakher, Y. Imry (Springer, 2003), pp. 197–224Google Scholar
  17. 17.
    J. Schriefl, Dephasing in coupled qubits. Master's thesis, Universität Karlsruhe/ ENS Lyon (2002)Google Scholar
  18. 18.
    P.J. Leek, J.M. Fink, A. Blais, R. Bianchetti, M. Goppl, J.M. Gambetta, D.I. Schuster, L. Frunzio, R.J. Schoelkopf, A. Wallraff, Science 318, 1889 (2007)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    M. Möttönen, J.J. Vartiainen, J.P. Pekola, arXiv:0710.5623 (2007)Google Scholar
  20. 20.
    W. Wernsdorfer, R. Sessoli, Science 284, 133 (1999)CrossRefADSGoogle Scholar
  21. 21.
    J.A. Jones, V. Vedral, A. Ekert, G. Castagnoli, Nature 403, 869 (2000)CrossRefADSGoogle Scholar
  22. 22.
    W. Wernsdorfer, M. Soler, G. Christou, D.N. Hendrickson, J. Appl. Phys. 91, 7164 (2002)CrossRefADSGoogle Scholar
  23. 23.
    J.B. Yau, E.P. De Poortere, M. Shayegan, Phys. Rev. Lett. 88, 146801 (2002)CrossRefADSGoogle Scholar
  24. 24.
    R.S. Whitney, Yu. Makhlin, A. Shnirman, Y. Gefen, in Theory of Quantum Transport in Metallic and Hybrid Nanostructures, ed. by A. Glatz, V. Kozub, V. Vinokur (Springer, 2006), pp. 9–23Google Scholar
  25. 25.
    S. Syzranov, Influence of noise on Berry phases in multilevel systems. Master's thesis, MIPT (2007). (in Russian)Google Scholar
  26. 26.
    F. Wilczek, A. Zee, Phys. Rev. Lett. 52, 2111 (1984)CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    C.W. Gardiner, P. Zoller, Quantum Noise (Springer, 2000)Google Scholar
  28. 28.
    Yu. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)CrossRefADSGoogle Scholar
  29. 29.
    C.P. Slichter, Principles of magnetic resonance (Harper & Row, 1963)Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Theoretische Physik IIIRuhr-Universitat BochumBochumGermany
  2. 2.Landau Institute for Theoretical PhysicsMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations