Conductance Oscillations With Magnetic Field Of A Two-Dimensional Electron Gas-Superconductor Junction

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

We develop the theory for the current voltage characteristics of a two-dimensional electron gas — superconductor interface in magnetic field at arbitrary temperatures and in the presence of the surface roughness. Our theory predicts that in the case of disordered interface the higher harmonics of the conductance oscillations with the filling factor are strongly suppressed as compared with the first one; it should be contrasted with the case of the ideal interface for which amplitudes of all harmonics involved are of the same order. Our findings are in qualitative agreement with recent experimental data.

Keywords

conductance junction magnetic field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. van Wees and H. Takayanagi, in Mesoscopic electron transport, ed. by L. L. Son et al. (Kluwer, The Netherlands, 1997), pp. 469–501.Google Scholar
  2. 2.
    H. Kroemer and E. Hu, in Nanotechnology, ed. by G. L. Timp (Springer, Berlin, 1999).Google Scholar
  3. 3.
    T. Schäpers, Superconductor/semiconductor junctions, vol. 174 of Springer Tracts on Modern Physics (Springer, Berlin/Heidelberg, 2001).Google Scholar
  4. 4.
    A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys. JETP 19, 1228 (1964)].Google Scholar
  5. 5.
    M.Tinkham, Introduction to superconductivity, (Mc.Graw-Hill, 1996).Google Scholar
  6. 6.
    H. Takayanagi and T. Akazaki, Physica B 249–251, 462 (1998).CrossRefGoogle Scholar
  7. 7.
    D. Uhlisch et.al., Phys. Rev. B 61, 12463 (2000).CrossRefADSGoogle Scholar
  8. 8.
    I. E. Batov, Th. Schapers, N.M. Chtchelkatchev, A.V. Ustinov, and H. Hardtde-gen, Andreev reflection and strongly enhanced magnetoresistance oscillations in Gax In1−x As/In P heterostructures with superconducting contacts, Phys. Rev. B 76, 115313 (2007).CrossRefADSGoogle Scholar
  9. 9.
    T. D. Moore and D. A. Williams, Phys. Rev. B 59, 7308 (1999).CrossRefADSGoogle Scholar
  10. 10.
    J. Eroms et.al., Phys. Rev. Lett. 95, 107001 (2005).CrossRefADSGoogle Scholar
  11. 11.
    Y. Asano, Phys. Rev. B 61, 1732 (2000); Y. Asano, T. Yuito, Phys. Rev. B 62, 7477 (2000); Y. Asano and T. Kato, J. Phys. Soc. Jap. 629, 1125 (2000).CrossRefADSGoogle Scholar
  12. 12.
    Y. Takagaki, Phys. Rev. B 57, 4009 (1998).CrossRefADSGoogle Scholar
  13. 13.
    H. Hoppe, U. Zülicke, and G. Schön, Phys. Rev. Lett. 84, 1804 (2000); F. Giazotto, M. Governale, U. Zülicke, and F. Beltram, Phys. Rev. B 72, 54518 (2005).CrossRefADSGoogle Scholar
  14. 14.
    N. M. Chtchelkatchev, JETP Lett. 73, 94 (2001) [Pis. Zh. Eksp. Teo Fiz. Vol. 73, 100 (2001)];CrossRefADSGoogle Scholar
  15. 15.
    G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).CrossRefADSGoogle Scholar
  16. 16.
    C. J. Lambert, J. Phys.: Condens. Matter 3, 6579(1991); Y. Takane and H. Ebisawa, J. Phys. Soc. Jpn. 61, 1685 (1992).CrossRefADSGoogle Scholar
  17. 17.
    S. Datta, P. F. Bagwell, M. P. Anatram, Phys. Low-Dim. Struct., 3, 1 (1996).Google Scholar
  18. 18.
    Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).CrossRefADSGoogle Scholar
  19. 19.
    H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, A. D. Stone, Phys. Rev. B 44, 10637 (1991).CrossRefADSGoogle Scholar
  20. 20.
    K. Richter, Semiclassical theory of mesoscopic quantum systems, Springer tracts in modern physics, vol. 161 (Springer, Berlin/Heidelberg, 2000), pp. 63–68.Google Scholar
  21. 21.
    M. Born, E. Wolf, Principles of optics, Pergamon Press, 1986, p. 341.Google Scholar
  22. 22.
    V. P. Maslov, M. V. Fedoruk, Quasiclassical approximation for equations of quantum mechanics, (Nauka publishing, Moscow, 1976).MATHGoogle Scholar
  23. 23.
    A. V. Svidzinsky, Space nongomogenius problems of supercondcutivity, (Nauka publishing, Moscow 1982).Google Scholar
  24. 24.
    N. M. Chtchelkatchev, I. S. Burmistrov, Conductance oscillations with magnetic field of a two-dimensional electron gas-superconductor junction, Phys. Rev. B 75, 214510 (2007).CrossRefADSGoogle Scholar
  25. 25.
    This is usual assumptions that the reflected electron (hole) rays can be considered as incoherent with the incident ray on a (sligtly) disorderd interface. This assumption is widely used in nanophysics. Well-known Zaitsev boundary conditions for quasiclassical Green functions were derived with this assumption. With the help of this assumption the so-called “nondiagonal”, quckly oscillating components of the Green functions that carry information about the coherence were regarded as quickly fading [if we go off the surface] [?].Google Scholar
  26. 26.
    A. V. Zaitsev, Sov. Phys. JETP 59, 1163 (1984).Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.L.D. Landau Institute for Theoretical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations