Modelling of the Atmospheric Transport and Deposition of Ammonia at a National and Regional Scale

  • Addo van Pul
  • Ole Hertel
  • Camilla Geels
  • Anthony J. Dore
  • Massimo Vieno
  • Hans A. van Jaarsveld
  • Robert Bergström
  • Martijn Schaap
  • Hilde Fagerli

An overview of the current status of the modeling of the atmospheric transport and deposition of ammonia at a national and regional scale is presented. Firstly, the paper deals with the parameterizations of the transport and removal processes of ammonia used in modeling. Subsequently, an overview of the models currently in use describing the ammonia concentration and deposition at a national or (sub-) European scale is given. The emphasis lies on (a) the process parameterizations that are particularly important for ammonia such as the emission, deposition and chemical conversion and (b) the validation with measurements. Finally, discussion items as input to the Working Group 4 session are defined that follow from the model overview and validation.

Measurements of ammonia and ammonium concentrations and deposition from monitoring programmes are crucial for providing information about trends and actual loads of ammonia in the environment. Such data may together with data from field campaigns form the basis of our understanding of the physical and chemical processes governing the fate of ammonia. However, modelling of the concentrations and deposition of ammonia extends our possibilities substantially. Measurements are usually carried out at a limited number of locations. Model calculations are therefore used to obtain information with higher geographical resolutions and for estimates of loads at locations not covered by the monitoring network. Well-tested and validated models are furthermore highly useful in the interpretation of the measurements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen H. V., Hovmand M. F., Hummelshoj P. and Jensen N. O. (1999) Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991–1995 Atmospheric Environment, 33, 1367–1383.Google Scholar
  2. Andersson C., Langner J. and Bergström R. (2007) Inter-annual variation and trends in air pollution over Europe due to climate variability during 1958–2001 simulated with a regional CTM coupled to the ERA40 reanalysis. Tellus B, 59, 77–98, doi: 10.1111/j.1600–0889.2006.00196.x.CrossRefGoogle Scholar
  3. Andersson-Sköld Y. and Simpson D. (1999) Comparison of the chemical schemes of the EMEP MSC-W and the IVL photochemical trajectory models. Atmospheric Environment, 33, 1111–1129.CrossRefGoogle Scholar
  4. Aneja V. P., Nelson D. R., Roelle P. A., Walker J. T. and Battye W. (2003) Agricultural ammonia emissions and ammonium concentrations associated with aerosols and precipitation in the southeast United States. Journal of Geophysical Research-Atmospheres, 108.Google Scholar
  5. Apsimon H. M., Barker B. M. and Kayin S. (1994) Modeling studies of the atmospheric release and transport of ammonia in anticyclonic episodes. Atmospheric Environment, 28, 665–678.CrossRefGoogle Scholar
  6. Asman W. A. H. (1998) Factors influencing local dry deposition of gases with special reference to ammonia. Atmospheric Environment, 32, 415–421.CrossRefGoogle Scholar
  7. Asman W. A. H. (2001) Modelling the atmospheric transport and deposition of ammonia and ammonium: an overview with special reference to Denmark. Atmospheric Environment, 35, 1969–1983.CrossRefGoogle Scholar
  8. Asman W. A. H. and Janssen A. J. (1987) A long-range transport model for ammonia and ammonium for Europe. Atmospheric Environment, 21, 2099–2119.CrossRefGoogle Scholar
  9. Asman W. A. H. and van Jaarsveld J. A. (1992) A variable-resolution transport model applied for NHx in Europe. Atmospheric Environment, 26A, 445–464.Google Scholar
  10. Asman W. A. H., Pinksterboer E. F., Maas H. F. M., Erisman J. W., Waijers Yperlaan A., Slanina J. and Horst T. W. (1989) Gradients of the ammonia concentration in a nature reserve — model results and measurements. Atmospheric Environment, 23, 2259–2265.CrossRefGoogle Scholar
  11. Badas M. G., Deidda R. and Piga E. (2006) Modulation of homogeneous space-time rainfall cascades to account for orographic influences. Natural Hazards and Earth System Sciences, 6, 427.Google Scholar
  12. Baldwin A. C. and Golden D. M. (1979) Heterogeneous atmospheric reactions — sulfuric-acid aerosols as tropospheric sinks. Science, 206, 562–563.CrossRefGoogle Scholar
  13. Bartnicki J., Olendrzynski K., Jonson J. E., Berge E. and Unger S. (2001) Description of the Eulerian acid deposition model. http://projects.dnmi.no/ emep/acid/eudm.pdf
  14. Battye W., Aneja V. P. and Roelle P. A. (2003) Evaluation and improvement of ammonia emissions inventories. Atmospheric Environment, 37, 3873–3883.CrossRefGoogle Scholar
  15. Benedictow A. (1999) Meteorological fields produced by PARLAM-PS and used as input for Eulerian EMEP model. Documentation and characterization, Technical Report. The Norwegian Meteorological Institute, Oslo, Norway, 2002.Google Scholar
  16. Bogaard A. and Duyzer J. (1997) Een vergelijking tussen resultaten van metingen en berekeningen van de concentratie van ammoniak in de buienlucht op een schaal kleiner dan5 kilometer, TNO-report, TNO-MEP-R97/423, Apeldoorn, the Netherlands.Google Scholar
  17. Bott A. (1989a) A positive definite advection scheme obtained by non-linear re-normalization of the advection fluxes. Monthly Weather Review, 117, 1006–1015.CrossRefGoogle Scholar
  18. Bott A. (1989b) Reply. Monthly Weather Review, 117, 2633–2636.CrossRefGoogle Scholar
  19. Bouwman A. F., Lee D. S., Asman W. A. H., Dentener F. J., VanderHoek K. W. and Olivier J. G. J. (1997) A global high-resolution emission inventory for ammonia. Global Biogeochemical Cycles, 11, 561–587.CrossRefGoogle Scholar
  20. Bower K. N., Wells M., Choularton T. W. and Sutton M. A. (1995) A model of ammonia/ammonium conversion and deposition in a hill cap cloud. Quarterly Journal of the Royal Meteorological Society, 121, 569–591.CrossRefGoogle Scholar
  21. Christensen J. H. (1997) The Danish Eulerian hemispheric model — a three-dimensional air pollution model used for the Arctic. Atmospheric Environment, 31, 4169–4191.CrossRefGoogle Scholar
  22. Daumer B., Niessner R. and Klockow D. (1992) Laboratory studies of the influence of thin organic films on the neutralization reaction of H2SO4 aerosol with ammonia. Journal of Aerosol Science, 23, 315–325.CrossRefGoogle Scholar
  23. De Leeuw F. A. A. M., van Rheineck L. H. J. and Builtjes P. J. H. (1990) Calculation of long term averaged ground level ozone concentrations. Atmospheric Environment, 24A, 185–193.Google Scholar
  24. Dentener F. J. and Crutzen P. J. (1993) Reaction of N2O5 on tropospheric aerosols: impact on the global distributions of NOx, O3, and OH. Journal of Geophysical Research, 7149–7163.Google Scholar
  25. Dentener F. J. and Crutzen P. J. (1994) A three-dimensional model of the global ammonia cycle. Journal of Atmospheric Chemistry, 19, 331–369.CrossRefGoogle Scholar
  26. Derwent R. G., Hov ø., Asman W. A. H., van Jaarsveld J. A. and de Leeuw F. A. A. M. (1989) An intercomparison of long-term atmospheric transport models; the budgets of acidifying species for the Netherlands. Atmospheric Environment, 23, 1893–1909.CrossRefGoogle Scholar
  27. Dore A. J., Vieno M., Tang Y. S., Dragosits U., Dosio A., Weston K. J. and Sutton M. A. (2007) Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO2 emissions from international shipping. Atmospheric Environment, 41(11), 2355–2367, doi:10.1016/j.atmosenv.2006.11.013.CrossRefGoogle Scholar
  28. Dragosits U., Sutton M. A., Place C. J. and Bayley A. A. (1998) Modelling the spatial distribution of agricultural ammonia emissions in the UK. Environmental Pollution, 102.Google Scholar
  29. Dragosits U., Theobald M. R., Place C. J., Lord E., Webb J., Hill J., ApSimon H. M. and Sutton M. A. (2002) Ammonia emission, deposition and impact assessment at the field scale: a case study of sub-grid spatial variability. Environmental Pollution, 117, 147–158.CrossRefGoogle Scholar
  30. Duyzer J. H., Verhagen H. L. M., Weststrate J. H. and Bosveld F. C. (1992) Measurement of the dry deposition flux of NH3 on to Coniferous forest. Environmental Pollution, 75, 3–13.CrossRefGoogle Scholar
  31. Duyzer J., Nijenhuis B. and Weststrate H. (2001) Monitoring and modelling of ammonia concentrations and deposition in agricultural areas of the Netherlands. Water Air and Soil Pollution: Focus, 1, 131–144.CrossRefGoogle Scholar
  32. Ellermann T., Andersen H. V., Bossi R., Brandt J., Christensen J., Frohn L. M., Geels C., Kemp K., Løfstrøm P., Mogensen B. and Monies C. (2006) Atmospheric Deposition. NOVANA (In Danish: Atmosfærisk deposition. NOVANA), 595, pp. 1–66. National Environmental Research Institute. Technical Report.Google Scholar
  33. Erisman J. W., van Pul A. and Wyers P. (1994) Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmospheric Environment, 28, 2595–2607.CrossRefGoogle Scholar
  34. Erisman J. W., Hensen A., Fowler D., Flechard C. R., Grüner A., Spindler G., Duyzer J. H., Weststrate H., Römer F., Vonk A. W. and Jaarsveld H. V. (2001) Dry deposition monitoring in europe. Water Air and Soil Pollution: Focus, 1, 17–27.CrossRefGoogle Scholar
  35. Fagerli H. and Aas W. (2008) Trends of nitrogen in air and precipitation. Model results and observations at EMEP sites in Europe, 1980–2003, doi : 10.1016/j.envpol.2008.01.024 (in press).Google Scholar
  36. Fagerli H., Simpson D. and Aas W. (2003) Model performance for sulphur and nitrogen compounds for the period 1980 to 2000. In: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. EMEP Status Report 1/2003, Part II Unified EMEP Model Performance, pp. 1–66. The Norwegian Meteorological Institute, Oslo, Norway, 2003. Available from http://www.emep.int
  37. Fagerli H., Simpson D. and Tsyro S. (2004) Unified EMEP model: updates. In: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe. Status Report 1/2004, pp. 11–18. The Norwegian Meteorological Institute, Oslo, Norway, 2004. Available from http://www.emep.int
  38. Fagerli H., Legrand M., Preunkert S., Vestreng V., Simpson D. and Cerqueira M. (2007) Modeling historical long-term trends of sulfate, ammonium, and elemental carbon over Europe: a comparison with ice core records in the Alps. Journal of Geophysical Research, 112, D23S13, doi:10.1029/2006JD008044.Google Scholar
  39. Farquhar G. D., Firth P. M., Wetselaar R. and Weir B. (1980) On the gaseous exchange of ammonia between leaves and the environment — determination of the ammonia compensation point. Plant Physiology, 66, 710–714.CrossRefGoogle Scholar
  40. Fournier N., Dore A. J., Vieno M., Weston K. J., Dragosits U. and Sutton M. A. (2004) Modelling the deposition of atmospheric oxidised nitrogen and sulphur to the United Kingdom using a multi-layer long-range transport model. Atmospheric Environment, 38(5), 683–694.CrossRefGoogle Scholar
  41. Fournier, N, Weston K. J., Dore A. J. and Sutton M. A. (2005a) Modelling the wet deposition of reduced nitrogen over the British Isles using a Lagrangian multi-layer atmospheric transport model. Quarterly Journal of Royal Met. Society, 131, 703–722.CrossRefGoogle Scholar
  42. Fournier N, Tang Y. S., Dragosits U., de Kluizenaar Y. and Sutton M. A. (2005b) Regional atmospheric budgets of reduced nitrogen over the British Isles assessed using an atmospheric transport model. Water Air and Soil Pollution, 162, 331–351.CrossRefGoogle Scholar
  43. Fowler D. and Erisman J. W (2003) Biosphere/atmosphere exchange of pollutants. Overview of subproject BIATEX-2. In: Midgley P. M. and Reuther M. (eds.) Towards Cleaner Air for Europe — Science, Tools and Applications, Part 2. Overviews from the Final Reprots of the EUROTRAC-2 Subprojects. Margraf Verlag, Weikersheim, Germany.Google Scholar
  44. Fowler D., Sutton M., Flechard C, Cape J. N, Storeton-West R. L., Coyle M. and Smith R. I. (2001) The control of SO2 dry deposition on to natural surfaces by NH3 and its effects on regional deposition. Water Air and Soil Pollution: Focus, 1, 39–48.CrossRefGoogle Scholar
  45. Frohn L. M. (2004) A study of long-term high-resolution air pollution modelling. Ph.D. thesis reports. Ministry of the Environment, National Environmental Research Institute, Roskilde, Denmark.Google Scholar
  46. Frohn L. M., Christensen J. H., Brandt J. and Hertel O. (2001) Development of a high resolution integrated nested model for studying air pollution in Denmark. Physics and Chemistry of the Earth Part B-Hydrology Oceans and Atmosphere, 26, 769–774.CrossRefGoogle Scholar
  47. Frohn L. M., Christensen J. H. and Brandt J. (2002) Development and testing of numerical methods for two-way nested air pollution modelling. Physics and Chemistry of the Earth, 27, 1487–1494.Google Scholar
  48. Geels C, Doney S. C, Dargaville R., Brandt J. and Christensen J. (2004) Investigating the sources of synoptic variability in atmospheric CO2 measurements over the Northern Hemisphere continents: a regional model study. Tellus, 56B(1), 35–50.Google Scholar
  49. Geels C, Brandt J., Christensen J. H., Frohn L. M. and Hansen K. (2005) Long-term calculations with a comprehensive nested hemispheric air pollution transport model. In: Farago I. et al. (eds.) Advances in Air Pollution Modeling for Environmental Security, 185–196.Google Scholar
  50. Geels C, Bak J., Callesen T, Frohn L., Frydendall J., Gyldenkaerne S., Hansen A. G, Hutchings N, Jacobsen A. S., Pedersen P., Schneekloth M., Winther S., Hertel O. and Moseholm L. (2006) Guideline for approval of livestock farms (In Danish: Vejledning om godkendelse af husdyr-brug), 568, 83 p. National Environmental Research Institute, Roskilde, Denmark.Google Scholar
  51. Gidhagen L., Johansson C, Langner J. and Foltescu V. L. (2005) Urban scale modeling of particle number concentration in Stockholm. Atmospheric Environment, 39, 1711–1725.Google Scholar
  52. Gilliland A. B., Dennis R. L., Roselle S. J. and Pierce T. E. (2003) Seasonal NH3 emission estimates for the eastern United States based on ammonium wet concentrations and an inverse modeling method. Journal of Geophysical Research-Atmospheres, 108.Google Scholar
  53. Grell G A., Dudhia J. and Stauffer D. R. (1995) A description of the fifth-generation Penn State/ NCAR mesoscale model (MM5) [NCAR/TN-398 + STR], 117 pp. NCAR Technical Note.Google Scholar
  54. Gryning S. E., Holtslag A. A. M., Irwin J. S. and Sivertsen B. (1987) Applied dispersion modelling based on meteorological scaling parameters. Atmospheric Environment, 21, 79–89.CrossRefGoogle Scholar
  55. Gyldenkærne S., Skjøth C. A., Christensen J., Ellermann T, Frohn L. M., Brandt J. and Hertel O. (2005a) A high resolution ammonia emission inventory for regional scale air pollution models. Journal of Geophysical Research, 110, D07108, doi:10.1029/2004JD005459.Google Scholar
  56. Gyldenkærne S., Skjøth C. A., Hertel O. and Ellermann T. (2005b) A dynamical ammonia emission parameterization for use in air pollution models. Journal of Geophysical Research-Atmospheres, 110.Google Scholar
  57. Hansen K. M., Halsall C. J., Christensen J. H, Brandt J., Geels C, Frohn L. M. and Skjøth C. A. (2008) The effect of snow on the fate of α-HCH in a dynamic multimedia model. Environmental Science & Technology, 42(8), 2943–2948.CrossRefGoogle Scholar
  58. Harrison R. M. and Pio C. A. (1983) An investigation of the atmospheric HNO3-NH3-NH4NO3 equilibrium relationship in a cool, humid climate. Tellus Series B-Chemical and Physical Meteorology, 35, 155–159.CrossRefGoogle Scholar
  59. Hass H., van Loon M., Kessler C., Stern R., Matthijsen J., Sauter F., Zlatev Z., Langner J., Foltescu V. and Schaap M. (2003) Aerosol modelling: results and intercomparison from European regional-scale modelling systems EUROTRAC ISS, Munich, EUROTRAC-2 Special Report, 77.Google Scholar
  60. Hertel O., Christensen J., Runge E. H., Asman W. A. H., Berkowicz R., Hovmand M. F. and Hov O. (1995) Development and testing of a new variable scale air-pollution model — Acdep. Atmospheric Environment, 29, 1267–1290.CrossRefGoogle Scholar
  61. Hertel O., Skjoth C. A., Frohn L. M., Vignati E., Frydendall J., de Leeuw G., Schwarz U. and Reis S. (2002) Assessment of the atmospheric nitrogen and sulphur inputs into the North Sea using a Lagrangian model. Physics and Chemistry of the Earth, 27, 1507–1515.Google Scholar
  62. Hertel O., Skjoth C. A., Lofstrom P., Geels C., Frohn L. M., Ellermann T. and Madsen P. V. (2006) Modelling nitrogen deposition on a local scale — a review of the current state of the art. Environmental Chemistry, 3, 317–337.CrossRefGoogle Scholar
  63. Holtslag A. A. M. and Nieuwstadt F. T. M. (1986) Scaling the atmospheric boundary layer. Boundary-Layer Meteorology, 36, 201–209.CrossRefGoogle Scholar
  64. Horst T. W. (1977) Surface depletion model for deposition from a gaussian plume: atmospheric environment, 11, 41–46.CrossRefGoogle Scholar
  65. Huijsmans J. F. M., Hol J. M. G. and Vermeulen G. D. (2003) Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmospheric Environment, 37, 3669–3680.CrossRefGoogle Scholar
  66. Huntzicker J. J., Cary R. A. and Ling C. S. (1980) Neutralization of sulfuric-acid aerosol by ammonia. Environmental Science & Technology, 14, 819–824.CrossRefGoogle Scholar
  67. Husted S., Schjoerring J. K., Nielsen K. H., Nemitz E. and Sutton M. A. (2000) Stomatal compensation points for ammonia in oilseed rape plants under field conditions. Agricultural and Forest Meteorology, 105, 371–383.CrossRefGoogle Scholar
  68. Hutchings N. J., Sommer S. G., Andersen J. M. and Asman W. A. H. (2001) A detailed ammonia emission inventory for Denmark. Atmospheric Environment, 35, 1959–1968.CrossRefGoogle Scholar
  69. Jacob D. J. (2000) Heterogeneous chemistry and tropospheric ozone. Atmospheric Environment, 34, 2131–2159.CrossRefGoogle Scholar
  70. Janssen A. J. and Asman W. A. H. (1988) Effective removal parameters in long-range air pollution transport models. Atmospheric Environment, 22, 359–367.CrossRefGoogle Scholar
  71. Jonson J. E., Simpson D., Fagerli H. and Solberg S. (2006) Can we explain the trends in European ozone levels? Atmospheric Chemistry and Physics, 6(1), 51–66.Google Scholar
  72. Junge E. and Ryan T. G. (1958) Study of the SO2 oxidation in solution and its role in atmospheric chemistry. Quarterly Journal of the Royal Meteorological Society, 84, 46–55.CrossRefGoogle Scholar
  73. Kerschbaumer A. and Reimer E. (2003) Preparation of Meteorological Input Data for the RCG-Model. UBA-Rep. 299 43246, Free University. Berlin Institute for Meteorology (in German).Google Scholar
  74. Kuhn M., Builtjes P. J. H., Poppe D., Simpson D., Stockwell W. R., Andersson-Skoeld Y., Baart A., Das M., Fiedler F., Hov ø., Kirchner F., Makar P. A., Milford J. B., Roemer M. G. M., Ruhnke R., Strand A., Vogel B. and Vogel H. (1998) Intercomparison of the gas-phase chemistry in several chemistry and transport models. Atmospheric Environment, 32(4), 693–709.CrossRefGoogle Scholar
  75. Langner J., Robertson L., Persson C. and Ullerstig A. (1998) Validation of the operational emergency response model at the Swedish meteorological and hydrological institute using data from ETEX and the Chernobyl accident. Atmospheric Environment, 32, 4325–4333.CrossRefGoogle Scholar
  76. Langner J., Bergström R. and Foltescu V. L. (2005) Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe. Atmospheric Environment, 39, 1129–1141.CrossRefGoogle Scholar
  77. Lee D. S., Halliwell C., Garland J. A., Dollard G. J. and Kingdon R. D. (1998) Exchange of ammonia at the sea surface — a preliminary study. Atmospheric Environment, 32, 431–439.CrossRefGoogle Scholar
  78. Loubet B., Milford C., Sutton M. A. and Cellier P. (2001) Investigation of the interaction between sources and sinks of atmospheric ammonia in an upland landscape using a simplified dispersion-exchange model. Journal of Geophysical Research-Atmospheres, 106, 24183–24195.CrossRefGoogle Scholar
  79. McMurry P. H., Takano H. and Anderson G. R. (1983) Study of the ammonia (gas) sulfuric-acid (aerosol) reaction-rate. Environmental Science & Technology, 17, 347–352.CrossRefGoogle Scholar
  80. Metzger S. M., Dentener F. J., Jeuken A., Krol M. and Lelieveld J. (2002a) Gas/aerosol partitioning 2. global modeling results. Journal of Geophysical Research, 107(D16), ACH 17.Google Scholar
  81. Metzger S. M., Dentener F. J., Lelieveld J. and Pandis S. N. (2002b) Gas/aerosol partitioning 1. a computionally efficient model. Journal of Geophysical Research, 107(D16), ACH 17.Google Scholar
  82. Milford C., Sutton M. A., Allen A. G., Karlsson A., Davison B. M., James J. D., Rosman K., Harrison R. M. and Cape J. N. (2000) Marine and land-based influences on atmospheric ammonia and ammonium over Tenerife. Tellus Series B-Chemical and Physical Meteorology, 52, 273–289.CrossRefGoogle Scholar
  83. Milford C., Theobald M. R., Nemitz E. and Sutton M. A. (2001) Dynamics of ammonia exchange in response to cutting and fertilising in an intensively-managed grassland. Water Air and Soil Pollution: Focus, 1, 167–176.CrossRefGoogle Scholar
  84. NEGTAP (2001) Transboundary Air Pollution: Acidification, Eutrophication and Ground Level ozone in the UK. Report of the National Expert Group on Transboundary Air Pollution, DEFRA, London.Google Scholar
  85. Nemitz E., Milford C. and Sutton M. A. (2001) A two-level canopy compensation point model for describing bi-directional biosphere-atmosphere exchange of ammonia. Quarterly Journal of the Royal Meteorological Society, 127, 815–833.CrossRefGoogle Scholar
  86. Nemitz E., Sutton M. A., Wyers G. P. and Jongejan P. A. C. (2004) Gas-particle interactions above a Dutch heathland: I. Surface exchange fluxes of NH3, SO2, HNO3 and HCl. Atmospheric Chemistry and Physics, 4, 989–1005.CrossRefGoogle Scholar
  87. Nenes A., Pilinis C. and Pandis S. N. (1998) Isorropia: a new thermodynamic model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry, 4, 123–152.CrossRefGoogle Scholar
  88. Neirynck J., Kowalski A. S., Carrara A. and Ceulemans R. (2005) Driving forces for ammonia fluxes over mixed forest subjected to high deposition loads. Atmospheric Environment, 39, 5013–5024.CrossRefGoogle Scholar
  89. Olesen H. R. (1995) Regulatory dispersion modeling in Denmark. International Journal of Environment and Pollution, 5, 412–417.Google Scholar
  90. Park S. U. and Lee Y. H. (2002) Spatial distribution of wet deposition of nitrogen in South Korea. Atmospheric Environment, 36, 619–628.CrossRefGoogle Scholar
  91. Phillips S. B., Arya S. P. and Aneja V. P. (2004) Ammonia flux and dry deposition velocity from near-surface concentration gradient measurements over a grass surface in North Carolina. Atmospheric Environment, 38, 3469–3480.CrossRefGoogle Scholar
  92. Pio C. A. and Harrison R. M. (1987) The equilibrium of ammonium-chloride aerosol with gaseous hydrochloric-acid and ammonia under tropospheric conditions. Atmospheric Environment, 21, 1243–1246.CrossRefGoogle Scholar
  93. Quinn P. K., Charlson R. J. and Bates T. S. (1988) Simultaneous observations of ammonia in the atmosphere and ocean. Nature, 335, 336–338.CrossRefGoogle Scholar
  94. Raes F., Van Dingenen R., Wilson J. and Saltelli A. (1993) Dimethyl Sulphide, Oceans, Atmosphere and Climate (Restelli G. and Angeletti G. (eds.). Kluwer, Dordrecht, The Netherlands, pp. 311–322.Google Scholar
  95. Robertson L., Langner J. and Engardt M. (1999) An Eulerian limited-area atmospheric transport model. Journal of Applied Meteorology, 38, 190–210.CrossRefGoogle Scholar
  96. Schaap M., van Loon M., ten Brink H. M., Dentener F. D. and Builtjes P. J. H. (2004) Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmospheric Physics and Chemistry, 4, 857–874.CrossRefGoogle Scholar
  97. Schaap M., Roemer M., Sauter F., Boersen G., Timmermans R. and Builtjes P. J. H. (2005) LOTOS-EUROS Documentation, TNO report B&O 2005/297. TNO, Apeldoorn, The Netherlands.Google Scholar
  98. Schaap M., Vautard R., Bergström R., van Loon M., Bessagnet B., Brandt J., Christensen J. H., Cuvelier K., Foltescu V., Graff A., Jonson J. E., Kerschbaumer A., Krol M., Langner J., Roberts P., Rouïl L., Stern R., Tarrasón L., Thunis P., Vignati E., White L., Wind P. and Builtjes P. J. H. (2008) Atmospheric Environment (submitted).Google Scholar
  99. Schjoerring J. K., Kyllingsbaek A., Mortensen J. V. and Byskovnielsen S. (1993) Field investigations of ammonia exchange between barley plants and the atmosphere.1. Concentration profiles and flux densities of ammonia. Plant Cell and Environment, 16, 161–167.Google Scholar
  100. Schjoerring J. K., Husted S. and Poulsen M. M. (1998) Soil-plant-atmosphere ammonia exchange associated with Calluna vulgaris and Deschampsia flexuosa. Atmospheric Environment, 32, 507–512.CrossRefGoogle Scholar
  101. Schwarz U., Wickert B., Obermeier A. and Friedrich R. (2000) Generation of Atmospheric Emission Inventories in Europe with High Spatial and Temporal Resolution. Southampton SO40 7AA, WIT, Southampton, UK.Google Scholar
  102. Scott B. C. (1979) Parameterization of sulphate removal by precipitation. Journal of Applied Meteorology, 17, 11375–11389.Google Scholar
  103. Seedorf J., Hartung J., Schroder M., Linkert K. H., Pedersen S., Takai H., Johnsen J. O., Metz J. H. M., Groot Koerkamp P. W. G. and Uenk G. H. (1998a) A survey of ventilation rates in livestock buildings in Northern Europe. Journal of Agricultural Engineering Research, 70, 39–47.CrossRefGoogle Scholar
  104. Seedorf J., Hartung J., Schroder M., Linkert K. H., Pedersen S., Takai H., Johnsen J. O., Metz J. H. M., Groot Koerkamp P. W. G. and Uenk G. H. (1998b) Temperature and moisture conditions in livestock buildings in Northern Europe. Journal of Agricultural Engineering Research, 70, 49–57.CrossRefGoogle Scholar
  105. Seinfeld J. H. and Pandis S. N. (1998) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, New York.Google Scholar
  106. Simpson D. (1995) Biogenic emissions in Europe 2: Implications for ozone control strategies. Journal of Geophysical Research, 100(D11), 22891–22906.CrossRefGoogle Scholar
  107. Simpson D., Andersson-Skoeld Y. and Jenkin M. E. (1993) Updating the Chemical Scheme for the EMEP MSC-W Oxidant Model: Current Status. Norwegian Meteorological Institute, EMEP MSC-W Note 2/93.Google Scholar
  108. Simpson D., Fagerli H., Jonson J. E., Tsyro S., Wind P. and Tuovinen J-P. (2003) Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe, PART I, Unified EMEP Model Description. 1, pp. 1–104. 1-8-2003.Google Scholar
  109. Singles R. J., Sutton M. A. and Weston K. J. (1998) A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain. Atmospheric Environment, 32, 393–399.CrossRefGoogle Scholar
  110. Siniarovina U. and Engardt M. (2005) High-resolution model simulations of anthropogenic sulphate and sulphur dioxide in Southeast Asia. Atmospheric Environment, 39, 2021–2034.CrossRefGoogle Scholar
  111. Skjøth C. A, Ellermann T., Gyldenkærne S., Hertel O., Geels C., Frohn L., Frydendall J. and Løfstrøm P. (2006) Footprints on Ammonia Concentrations from Emission Regulations. Presented at Bolger Conference Center, Potomac, MD, 5–8 June 2006.Google Scholar
  112. Smith R., Fowler D., Sutton M. A., Flechard C. and Coyle M. (2000) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs. Atmospheric Environment, 34, 3757–3777.CrossRefGoogle Scholar
  113. Smith R., Fowler D. and Sutton M. A. (2003) The External Surface Resistance in the EMEP Eulerian Model. Unpublished Note, Centre for Ecology and Hydrology, Penicuik, Scotland.Google Scholar
  114. Sorensen L. L., Hertel O., Skjoth C. A., Lund M. and Pedersen B. (2003) Fluxes of ammonia in the coastal marine boundary layer. Atmospheric Environment, 37, S167–S177.CrossRefGoogle Scholar
  115. Sorteberg A. and Hov O. (1996). Two parametrizations of the dry deposition exchange for SO2 and NH3 in a numerical model. Atmospheric Environment, 30, 1823–1840.CrossRefGoogle Scholar
  116. Stelson A. W. and Seinfeld J. H. (1982) Relative-humidity and temperature-dependence of the ammonium-nitrate dissociation-constant. Atmospheric Environment, 16, 983–992.CrossRefGoogle Scholar
  117. Stelson A. W., Friedlander S. K. and Seinfeld J. H. (1979) Note on the equilibrium relationship between ammonia and nitric-acid and particulate ammonium-nitrate. Atmospheric Environment, 13, 369–371.CrossRefGoogle Scholar
  118. Stohl A. (1998) Computation, accuracy and applications of trajectories — a review and bibliography. Atmospheric Environment, 32, 947–966.CrossRefGoogle Scholar
  119. Stohl A. and Koffi N. E. (1998) Evaluation of trajectories calculated from ECMWF data against constant volume balloon flights during ETEX. Atmospheric Environment, 32, 4151–4156.CrossRefGoogle Scholar
  120. Sutton M. A., Fowler D. and Moncrieff J. B. (1993) The exchange of atmospheric ammonia with vegetated surfaces.1. Unfertilized vegetation. Quarterly Journal of the Royal Meteorological Society, 119, 1023–1045.CrossRefGoogle Scholar
  121. Sutton M. A., Burkhardt J. K., Guerin D., Nemitz E. and Fowler D. (1998) Development of resistance models to describe measurements of bi-directional ammonia surface-atmosphere exchange. Atmospheric Environment, 32, 473–480.CrossRefGoogle Scholar
  122. Sutton M. A., Dragosits U., Tang Y. S. and Fowler D. (2000) Ammonia emissions from nonagricultural sources in the UK. Atmospheric Environment, 34, 855–869.CrossRefGoogle Scholar
  123. Sutton M. A., Tang Y. S., Miners B. and Fowler D. (2001) A new diffusion denuder system for long-term, regional monitoring of atmospheric ammonia and ammonium. Water Air and Soil Pollution: Focus, 1, 145–156.CrossRefGoogle Scholar
  124. Tang Y. S., Cape J. N. and Sutton M. A. (2001) Development and types of passive samplers for monitoring atmospheric NO2 and NH3 concentrations. The Scientific World, 1, 513–529.Google Scholar
  125. Van Hove L. W. A., Adema E. H., Vredenberg W. J. and Pieters G. A. (1989) A study of the adsorption of NH3 and SO2 on leaf surfaces. Atmospheric Environment, 23, 1479–1486.CrossRefGoogle Scholar
  126. Van Jaarsveld J. A. (1995) Modelling the long-term atmospheric behaviour of pollutants on various spatial scales. Ph.D. thesis Utrecht University.Google Scholar
  127. Van Jaarsveld J. A. (1996) The dynamic exchange of pollutants at the air-soil interface and its impact on long range transport. In: Sven-Erik G. and Schiermayer F. (eds.) Air Pollution Modeling and Its Application XI. Plenum, New York.Google Scholar
  128. Van Jaarsveld J. A. (2004) The Operational Priority Substances model. RIVM 500045001.Google Scholar
  129. Van Jaarsveld J. A., Bleeker A. and en Hoogervorst N. J. P. (2000) Evaluatie ammoniakredukties met behulp van metingen en modelberekeningen (Evaluation of ammonia reductions on the basis of measurements and model calculations). RIVM report (in Dutch) 722108025, RIVM, Bilthoven.Google Scholar
  130. Van Pul A., Jaarsveld H. V., Meulen T. V. D. and Velders G. (2004) Ammonia concentrations in the Netherlands: spatially detailed measurements and model calculations. Atmospheric Environment, 38, 4045–4055.CrossRefGoogle Scholar
  131. Van Ulden A. P. (1978) Simple estimates for vertical diffusion from sources near the ground. Atmospheric Environment 12, 2125–2129.CrossRefGoogle Scholar
  132. Velders G. J. M., de Waal E. S., van Jaarsveld J. A. and de Ruiter J. F. (2003) The RIVM-MNP contribution to the evaluation of the EMEP Unified (Eulerian) model. RIVM-rapport 500037002/2003.Google Scholar
  133. Vestreng V. (2003) EMEP/MSC-W Technical Report. Review and Revision. Emission data reported to CLRTAP, MSC-W Status Report 2003. EMEP/MSC-W Note 1/2003. ISSN 0804–2446.Google Scholar
  134. Vieno M. (2005) The Use of an Atmospheric Chemistry-Transport Model (FRAME) over the UK and the Development of Its Numerical and Physical Schemes. Ph.D. thesis, University of Edinburgh, Edinburgh, UK.Google Scholar
  135. Visschedijk A. J. H. and Denier van der Gon H. A. C. (2005) Gridded European anthropogenic emission data for NOx, SOx, NMVOC, NH3, CO, PPM10, PPM2.5 and CH4 for the year 2000. TNO-Report B&O-A R 2005/106.Google Scholar
  136. Walcek C. J. (2000) Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection. Journal of Geophysical Research, 105(D7), 9335–9348.CrossRefGoogle Scholar
  137. Wells M., Bower K. N., Choularton T. W., Cape J. N., Sutton M. A., Storeton-West R. L., Fowler D., Wiedensohler A., Hansson H. C., Svenningsson B., Swietlicki E., Wendisch M., Jones B., Dollard G., Acker K., Wieprecht W., Preiss M., Arends B. G., Pahl S., Berner A., Kruisz C., Laj P., Facchini M. C. and Fuzzi S. (1997) The reduced nitrogen budget of an orographic cloud. Atmospheric Environment, 31, 2599–2614.CrossRefGoogle Scholar
  138. Wesely M. L. (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical-models. Atmospheric Environment, 23, 1293–1304.CrossRefGoogle Scholar
  139. Whitten G., Hogo H. and Killus J. (1980) The carbon bond mechanism for photochemical smog. Environmental Science & Technology, 14, 14690–14700.CrossRefGoogle Scholar
  140. Wichink K. R. J, van Pul W. A. J., Otjes R. P., Hofschreuder P., Jacobs A. F. G. and Holtslag A. A. M. (2007) Ammonia fluxes and derived canopy compensation points over non-fertilized agricultural grassland in the Netherlands using the new gradient ammonia—high accuracy— monitor (GRAHAM). Atmospheric Environment, 41, 1275–1287.CrossRefGoogle Scholar
  141. Wickert B., Heidegger A. and Friedrich R. (2001) Calculations of Emissions in Europe with CAREAIR. Springer, Berlin/Heidelberg/New York.Google Scholar
  142. Wyers G. P. and Erisman J. W. (1998) Ammonia exchange over coniferous forest. Atmospheric Environment, 32, 441–451.CrossRefGoogle Scholar
  143. Yamartino R. J., Flemming J. and Stern R. M. (2004) Adaption of analytic diffusivity formulations to eulerian grid model layers finite thickness. 27th ITM on Air Pollution Modelling and its Application. Banff, Canada, October 24–29, 2004.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Addo van Pul
    • 1
  • Ole Hertel
    • 4
  • Camilla Geels
    • 4
  • Anthony J. Dore
    • 3
  • Massimo Vieno
    • 4
  • Hans A. van Jaarsveld
    • 5
  • Robert Bergström
    • 5
  • Martijn Schaap
    • 7
  • Hilde Fagerli
    • 8
  1. 1.RIVMLVMThe Netherlands
  2. 2.International Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  3. 3.Centre for Ecology & HydrologyBush EstatePenicuikUnited Kingdom
  4. 4.NERIDepartment of Atmospheric EnvironmentRoskildeDenmark
  5. 5.University of EdinburghSchool of Geosciences, Crew Building, The King's BuildingUnited Kingdom
  6. 6.The Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  7. 7.TNO Built Environment and GeosciencesEnvironment, Health and SafetyApeldoornThe Netherlands
  8. 8.Norwegian Meteorological InstituteResearch DepartmentOsloNorway

Personalised recommendations