Advertisement

I review 10 problems associated with the dynamical wave function collapse program, which were described in the first of these two papers. Five of these, the interaction, preferred basis, trigger, symmetry and superluminal problems, were shown there to have been resolved. In this volume in honor of Abner Shimony, I discuss the five remaining problems, tails, conservation law, experimental, relativity, legitimization. Particular emphasis is given to the tails problem, first raised by Abner. The discussion of legitimization contains a new argument, that the energy density of the fluctuating field which causes collapse should exert a gravitational force. This force can be repulsive, since this energy density can be negative. Speculative illustrations of cosmological implications are offered.

Keywords

State Vector Wave Packet Macroscopic Variable Tail State Collapse Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Pearle, “How Stands Collapse I,” J. Phys. A: Math. Theor. 40, 3189 (2007).zbMATHCrossRefMathSciNetADSGoogle Scholar
  2. 2.
    P. Pearle, Experimental Metaphysics: Quantum Mechanical Studies for Abner Shimony, R. S. Cohen, M. Horne and J. Stachel, eds. (Kluwer, Dordrecht, 1997), p. 143.Google Scholar
  3. 3.
    J. S. Bell in Sixty-Two Years of Uncertainty, A. I. Miller, ed. (Plenum, New York, 1990), p. 17.Google Scholar
  4. 4.
    P. Pearle, Phys. Rev. A 39, 2277 (1989).CrossRefADSGoogle Scholar
  5. 5.
    G. C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A 42, 78 (1990).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    G. C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D 34,470 (1986); Phys. Rev. D 36, 3287 (1987).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    B. Collett and P. Pearle, Found. Phys. 33, 1495 (2003).CrossRefMathSciNetGoogle Scholar
  8. 8.
    S. L. Adler, “Lower and Upper Bounds on CSL Parameters from Latent Image Formation and IGM Heating”: quant-ph/0605072, J. Phys. A: Math. Theor. 40, 2935 (2007).zbMATHCrossRefADSGoogle Scholar
  9. 9.
    P. Pearle, Phys. Rev. D 13, 857 (1976); Int'l. J. Theor. Phys. 18, 489 (1979); Found. Phys. 12, 249 (1982); in S. Diner, D. Fargue, G. Lochat and F. Selleri, eds., The Wave-Particle Dualism. (D. ReIDel, Dordrecht, 1984); Phys. Rev. D 29, 235 (1984); Phys. Rev. Lett. 53, 1775 (1984); J. Stat. Phys. 41, 719 (1985); P. Pearle, Phys. Rev. D33, 2240 (1986); in D. Greenberger, ed., New Techniques and IDeas in Quantum Measurement Theory, p. 457 (New York Academy of Sciences, Vol. 480, 1986), p. 539.CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    N. Gisin, Phys. Rev. Lett. 52, 1657 (1984); Phys. Rev. Lett. 53, 1776 (1984).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    C. Dove and E. J. Squires, Found. Phys. 25, 1267 (1995) found a hitting process which preserves symmetry. See also R. Tumulka, Proc. Roy. Soc. A462, 1897 (2006).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    A. Shimony in PSA 1990, Vol. 2, A. Fine, M. Forbes and L. Wessels, eds. (Philosophy of Science Association, East Lansing, 1991), p. 17.Google Scholar
  13. 13.
    G. C. Ghirardi and P. Pearle in PSA 1990, Vol. 2, A. Fine, M. Forbes and L. Wessels, eds. (Philosophy of Science Association, East Lansing, 1991), pp. 19, 35.Google Scholar
  14. 14.
    G. C. Ghirardi and T. Weber in R. S. Cohen, M. Horne and J. Stachel, eds., Potentiality, Entanglement and Passion-at-a-Distance, Quantum Mechanical Studies for Abner Shimony, Vo l. 2. (Kluwer, Dordrecht, 1997), p. 89. See also G. C. Ghirardi, R. Grassi and F. Benatti, Found. Phys. 20, 1271 (1990).Google Scholar
  15. 15.
    P. Pearle in Experimental Metaphysics, Quantum Mechanical Studies for Abner Shimony, Vol. 1, R. S. Cohen, M. Horne and J. Stachel, eds. (Kluwer, Dordrecht, 1997), p. 143.Google Scholar
  16. 16.
    S. Sarkar in Experimental Metaphysics, Quantum Mechanical Studies for Abner Shimony, Vol. 1, R. S. Cohen, M. Horne and J. Stachel, eds. (Kluwer, Dordrecht, 1997), p. 157.Google Scholar
  17. 17.
    D. Z. Albert and B. Loewer in R. Clifton, ed., Perspectives on Quantum Reality (Kluwer, Dordrecht, 1996), p. 81.Google Scholar
  18. 18.
    H. P. Stapp, Can. J. Phys. 80, 1043 (2002) and quant-ph 0110148.CrossRefADSGoogle Scholar
  19. 19.
    P. Pearle, Phys. Rev. 35, 742 (1967).Google Scholar
  20. 20.
    C. A. Fuchs and A. Peres, Phys. Today,70, 3 (2000).Google Scholar
  21. 21.
    E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik”, Naturwissenschaften 23: pp. 807–812; 823–828; 844–849 (1935). See the translation by J. D. Trimmer in J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement (Princeton University Press, New Jersey, 1983).CrossRefADSGoogle Scholar
  22. 22.
    L. Ballentine, Quantum mechanics. A Modern Development (World Scientific, Singapore, 1998).zbMATHGoogle Scholar
  23. 23.
    R. Omnès, Quantum Philosophy (Princeton University Press, Princeton, 1999), and references therein to work by R. B. Griffiths, M. Gell-Mann and J. Hartle.Google Scholar
  24. 24.
    J. Surowiecki, New Yorker, p. 40 (July 10 &17, 2006).Google Scholar
  25. 25.
    P. Pearle, Phys. Rev. D 29, 235 (1984).CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    A. Zeilinger in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham eds, (Clarendon, Oxford, 1986), p. 16.Google Scholar
  27. 27.
    O. Nairz, M. Arndt and A. Zeilinger, Am. J. Phys. 71, 319 (2003).CrossRefADSGoogle Scholar
  28. 28.
    W. Marshall, C. Simon, R. Penrose and D. Bouwmeester, Phys. Rev. Lett. 91, 130401 (2003).CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    A. Bassi, E. Ippoliti and S. l. Adler, Phys. Rev. Lett. 94, 030401 (2005).CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    P. Pearle and E. Squires, Phys. Rev. Lett. 73, 1 (1994).CrossRefADSGoogle Scholar
  31. 31.
    E. Garcia, Phys. Rev. D 51, 1458 (1995).CrossRefADSGoogle Scholar
  32. 32.
    B. Collett, P. Pearle, F. Avignone and S. Nussinov, Found. Phys. 25, 1399 (1995): P. Pearle, J. Ring, J. I. Collar and F. T. Avignone, Found. Phys. 29, 465 (1999).CrossRefADSGoogle Scholar
  33. 33.
    SNO collaboration, Phys. Rev. Lett. 92, 181301 (2004).CrossRefGoogle Scholar
  34. 34.
    G. Jones, P. Pearle and J. Ring, Found. Phys. 34, 1467 (2004).CrossRefADSGoogle Scholar
  35. 35.
    F. Karolyhazy, Nuovo Cimento 42A, 1506 (1966) presented a theory of collapse engendered by phase decoherence induced by metric fluctuations. As is the case with CSL, random walk of a small object is predicted by this theory, and Karolyhazy suggested testing it by looking for such motion.Google Scholar
  36. 36.
    G. Gabrielse et al., Phys. Rev. Lett. 65, 1317 (1990).CrossRefADSGoogle Scholar
  37. 37.
    P. Pearle, Phys. Rev. A 48, 913 (1993).CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    P. Pearle in D. H. Feng and B. L. Hu, eds., Quantum Classical Correspondence: Proceedings of the 4th Drexel Conference on Quantum Nonintegrability (International Press, Singapore, 1997), p. 69.Google Scholar
  39. 39.
    P. Pearle in F. Pettruccione and H. P. Breuer, eds., Open Systems and Measurement in Rela-tivistic Quantum Theory (Springer, HeIDelberg, 1999).Google Scholar
  40. 40.
    P. Pearle, Phys. Rev. A 72, 022112 (2005), p.195.CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    A. Bassi, E. Ippoliti and B. Vacchini, J. Phys. A: Math-Gen 38, 8017 (2005).zbMATHCrossRefMathSciNetADSGoogle Scholar
  42. 42.
    P. Pearle in A.I. Miller, ed., Sixty-Two Years of Uncertainty (Plenum, New York, 1990), p. 193.Google Scholar
  43. 43.
    G. Ghirardi, R. Grassi and P. Pearle, Found. Phys. 20, 1271 (1990).CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    P. Cvitanovich, I. Percival and A. Wirzba eds., Quantum Chaos-Quantum Measurement, (Kluwer, Dordrecht, 1992), p. 283.Google Scholar
  45. 45.
    N. Dowrick, Path Integrals and the GRW Model (preprint, Oxford, 1993).Google Scholar
  46. 46.
    P. Pearle, Phys. Rev. A 59, 80 (1999).CrossRefMathSciNetADSGoogle Scholar
  47. 47.
    O. Nicrosini and A. Rimini, Found. Phys. 33, 1061 (2003).CrossRefMathSciNetGoogle Scholar
  48. 48.
    P. Pearle in Stochastic Evolution of Quantum States in Open Systems and in Measurement Processes, L. Diosi and B. Lukacs, eds. (World Scientific, Singapore, 1994), p. 79.Google Scholar
  49. 49.
    P. Pearle in R. Clifton, ed., Perspectives on Quantum Reality (Kluwer, Dordrecht, 1996), p. 93.Google Scholar
  50. 50.
    P. Pearle, Phys. Rev. A 71, 032101 (2005).CrossRefMathSciNetADSGoogle Scholar
  51. 51.
    L. Diosi, Phys. Rev. A 40, 1165 (1989). See also the discussion and modification in G. C. Ghirardi, R. Grassi and A. Rimini, Phys. Rev. A 42, 1057 (1990).CrossRefADSGoogle Scholar
  52. 52.
    R. Penrose, Gen. Rel. Grav. 28, 581 (1990).CrossRefMathSciNetADSGoogle Scholar
  53. 53.
    P. Pearle and E. Squires, Found. Phys. 26, 291 (1996).CrossRefMathSciNetADSGoogle Scholar
  54. 54.
    Y. Aharonov and D. Z. Albert, Phys. Rev. D 29, 228 (1984).CrossRefMathSciNetADSGoogle Scholar
  55. 55.
    There is a connection to an interesting and imaginative piece of unestablished physics. S. L. Adler, Quantum theory as an emergent phenomenon (CambrIDge Univversity Press, CambrIDge 2004), argues that the formalism of quantum theory can be derived from statistical mechanical equilibrium behavior of a classical dynamics of certain matrix variables, and that the fluctuations from equilibrium can give rise to CSL-type collapse behavior. For a review which summarizes this argument, see P. Pearle, Studies in History and Philosophy of Modern Physics 36, 716 (2005).Google Scholar
  56. 56.
    A. G. Riess et al., Astr. J. 116, 1009 (1998).CrossRefADSGoogle Scholar
  57. 57.
    D. N. Spergel et al., Ap. J. Suppl. 170, 377 (2007).CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2009

Authors and Affiliations

  1. 1.Hamilton CollegeClintonUSA

Personalised recommendations