Relaxed Potentials and Evolution Equations for Inelastic Microstructures

  • Klaus Hackl
  • Dennis M. Kochmann
Part of the IUTAM BookSeries book series (IUTAMBOOK, volume 11)

Abstract

We consider microstructures which are not inherent to the material but occur as a result of deformation or other physical processes. Examples are martensitic twin-structures or dislocation walls in single crystals and microcrack-fields in solids. An interesting feature of all those microstructures is, that they tend to form similar spatial patterns, which hints at a universal underlying mechanism. For purely elastic materials this mechanism has been identified as minimisation of global energy. For non-quasiconvex potentials the minimisers are not anymore continuous deformation fields, but small-scale fluctuations related to probability distributions of deformation gradients, so-called Young measures. These small scale fluctuations correspond exactly to the observed microstructures of the material. The particular features of those, like orientation or volume fractions, can now be calculated via so-called relaxed potentials. We develop a variational framework which allows to extend these concepts to inelastic materials. Central to this framework will be a Lagrange functional consisting of the sum of elastic power and dissipation due to change of the internal state of the material. We will obtain time-evolution equations for the probability-distributions mentioned above. In order to demonstrate the capabilities of the formalism we will show an application to crystal plasticity.

Key words

inelasticity relaxation microstructures continuum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartels S, Carstensen C, Hackl K, Hoppe U (2004) Comp Meth Appl Meth Eng 193:5143–5175.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Conti S, Theil F (2005) Arch Rat Mech Anal 178:125–148.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Mielke A (2004) Comp Meth Appl Meth Eng 193:5095–5127.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lambrecht M, Miehe C, Dettmar J (2003) Int J Solids Struct 40:1369–1391.MATHCrossRefGoogle Scholar
  5. 5.
    Ortiz M, Repetto EA (1999) J Mech Phys Solids 47:397–462.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mielke A, Ortiz M (2007) ESAIM Control Optim Calc Var, online since December 21.Google Scholar
  7. 7.
    Conti S, Ortiz M (2008) J Mech Phys Solids 56:1885–1904.CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Hackl K, Schmidt-Baldassari M, Zhang W (2003) Mat Sci Eng A 378:503–506.CrossRefGoogle Scholar
  9. 9.
    Hackl K, Heinen R (2008) Continuum Mech Thermodyn 19:499–510.CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Hackl K (2006) Relaxed potentials and evolution equations. In: Gumbsch P (Ed) Proceedings Third International Conference on Multiscale Materials Modeling. Fraunhofer IRB Verlag.Google Scholar
  11. 11.
    Carstensen C, Hackl K, Mielke A (2002) Proc R Soc London A 458:299–317.MATHMathSciNetGoogle Scholar
  12. 12.
    Mielke A (2002) Finite elastoplasticity, Lie groups and geodesics on SL(d). In: Newton P, Weinstein A, Holmes P (Eds), Geometry, Dynamics, and Mechanics. Springer, Berlin.Google Scholar
  13. 13.
    Hackl K, Fischer FD (2008) Proc Roy Soc London A 464:117–132.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hackl K, Mielke A (2008) manuscript, in preparation.Google Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Klaus Hackl
    • 1
  • Dennis M. Kochmann
    • 1
  1. 1.Institute of MechanicsRuhr-University BochumBochumGermany

Personalised recommendations