Advertisement

Some Aspects of a Discontinuous Galerkin Formulation for Gradient Plasticity at Finite Strains

  • Andrew McBride
  • B. Daya Reddy
Part of the IUTAM BookSeries book series (IUTAMBOOK, volume 11)

Abstract

This work considers the extension of a model of gradient plasticity, previously analysed subject to the assumption of infinitesimal deformations, to the finite strain regime. The discontinuous Galerkin finite element method is used to solve the non-local expression of the plastic flow rule, thereby allowing the higher order terms that arise in the gradient formulation to be accommodated in an elegant manner.

Key words

gradient plasticity finite deformations discontinuous Galerkin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. C. Aifantis. On the micro structural origin of certain inelastic models. J. Eng. Mater. Tech., 106:326–330, 1984.CrossRefGoogle Scholar
  2. 2.
    P. Gudmundson. A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids, 52:1379–1406,2004.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. A. B. Engelen, N. A. Fleck, R. H. J. Peerlings, and M. G. D. Geers. An evaluation of higher-order plasticity theories for predicting size effects and localisation. Int. J. Solids Struct., 43:1857–1877, 2006.zbMATHCrossRefGoogle Scholar
  4. 4.
    D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19:742–760, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. K. Djoko, F. Ebobisse, A. T. McBride, and B. D. Reddy. A discontinuous Galerkin formulation for classical and gradient plasticity — Part 1: Formulation and analysis. Comput. Methods Appl. Mech. Engrg., 196:3881–3897, 2007.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    J. K. Djoko, F. Ebobisse, A. T. McBride, and B. D. Reddy. A discontinuous Galerkin formulation for classical and gradient plasticity. Part 2: Algorithms and numerical analysis. Comput. Methods Appl. Mech. Engrg., 197:1–21, 2007.CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    J. C. Simo. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Engrg., 99:61–112, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. G. D. Geers. Finite strain logarithmic hyperelasto-plasticity with softening: a strongly nonlocal implicit gradient framework. Comput. Methods Appl. Mech. Engrg., 193:3377–3401, 2004.zbMATHCrossRefGoogle Scholar
  9. 9.
    A. T. McBride and B. D. Reddy. A discontinuous Galerkin formulation for gradient plasticity at finite strains. In review.Google Scholar
  10. 10.
    J. C. Simo and F. Armero. Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Methods Engrg., 33:1413–1449, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Glaser and F. Armero. On the formulation of enhanced strain finite elements in finite deformations. Eng. Comput., 14(7):759–791, 1997.zbMATHCrossRefGoogle Scholar
  12. 12.
    B. D. Coleman and M. Gurtin. Thermodynamics with internal variables. J. Chem. Phys., 47:597–613, 1967.CrossRefGoogle Scholar
  13. 13.
    W. Han and B. D. Reddy. Plasticity: Mathematical Theory and Numerical Analysis, Vol. 9. Springer, 1999.Google Scholar
  14. 14.
    J. Pamin. Gradient-Dependent Plasticity in Numerical Simulation of Localization Phenomena. PhD thesis, Delft University of Technology, 1994.Google Scholar
  15. 15.
    M. E. Gurtin and L. Anand. A theory of strain gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations. Int. J. Plasticity, 53:1624–1649, 2005.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Andrew McBride
    • 1
  • B. Daya Reddy
    • 1
    • 2
  1. 1.Centre for Research in Computational and Applied MechanicsUniversity of Cape TownRondeboschSouth Africa
  2. 2.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations