Schumann Resonance Signatures of Global Lightning Activity

  • Gabriella Sátori
  • Vadim Mushtak
  • Earle Williams


This chapter is concerned with the Earth’s Schumann resonances (SR) and their application to understanding global lightning. The natural electromagnetic waves in the SR frequency range (5 Hz to approx. 60 Hz) radiated by lightning discharges are contained by the Earth-ionosphere cavity. This cavity excitation by lightning can occur as a single energetic flash (a ‘Q-burst’), or as an integration of a large number of less energetic flashes (the ‘background’ resonances). In principle, continuous observations of SR parameters (modal amplitudes, frequencies, and quality factors) provide invaluable information for monitoring the worldwide lightning activity from a single SR station. Relationships between the variation of SR intensity and global lightning activity are shown. Connections between the change of diurnal modal SR frequency range and the areal variation of worldwide lightning are demonstrated. The temporal variation of the diurnal SR frequency patterns characteristic of the global lightning dynamics is also presented. Distortions of ELF waves propagating between the lightning sources and the observer are theoretically discussed based on the TDTE (two-dimensional telegraph equation) technique, focusing on the role of the day-night asymmetry of the Earth-ionosphere cavity. Theoretical and observational results are compared. Both instruments for SR observations and spectral methods for deducing SR parameters are reviewed. Experimental findings by SR on global lightning variations on different time scales (diurnal, seasonal, intraseasonal, annual, semiannual, interannual, 5-day, long-term) are summarized. The growing use of SR measurements as a natural diagnostic for global climate change is emphasized.


Schumann resonance ELF Global lightning Earth-ionosphere cavity Day-night asymmetry Q-burst Charge moment Tropical chimneys Climate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anyamba E, Williams ER, Susskind J, Fraser-Smith A, Füllekrug M (2000) The manifestation of the Madden-Julian oscillation in global deep convection and in the Schumann resonance intensity, J. Atmos. Sci., 57, 1029–1044CrossRefGoogle Scholar
  2. Ádám A, Duma G, Horváth J (1990) A new approach to the electrical conductivity anomalies in the Drauzug-Bakony geological unit, Physics of the Earth and Planetary Interiors, Volume 60, Issue 1–4, 155–162CrossRefGoogle Scholar
  3. Baker MB, Christian HJ, Latham J (1995) A computational study of the relationships linking lightning frequency and other thundercloud parameters, Quart. J. Roy. Met. Soc., 121, 1525–548CrossRefGoogle Scholar
  4. Balser M, Wagner CA (1962) On Frequency Variations of the Earth-Ionosphere Cavity Modes, Journal of Geophysical Research 67, pp. 4081–4083CrossRefGoogle Scholar
  5. Banks RJ (1975) Complex demodulation applied to Pi2 geomagnetic pulsations. Geophys. J. R. Astr. Soc,. 58, 471–493Google Scholar
  6. Bashkuev Y, Khaptanov V (1999) Deep radio impedance sounding of the crust using the electromagnetic field of a VLF radio installation, Izvestiya. Physics of the Solid Earth, 37(2), 157Google Scholar
  7. Beamish D, Hanson HW, Webb DC (1979) Complex demodulation applied to Pi2 geomagnetic pulsations. Geophys. J. R. Astr. Soc., 58, 471–493Google Scholar
  8. Blakeslee RJ, Christian HJ, Vonnegut B (1989) Electrical measurements over thunderstorms, J. Geophys. Res., 94, 13135–13140CrossRefGoogle Scholar
  9. Boccippio DJ, Williams E, Heckman SJ, Lyons WA, Baker I, Boldi R (1995) Sprites, ELF transients and positive ground strokes, Science, 269, 1088–1091CrossRefGoogle Scholar
  10. Boccippio DJ, Wong C, Williams ER, Boldi R, Christian HJ, Goodman SJ (1998) Global validation of single-station Schumann resonance lightning location, J. Atmos. Sol. Terr. Phys., 60, 701–712CrossRefGoogle Scholar
  11. Boccippio DJ (2001) Lightning scaling relations revisited, J. Atmos. Sci., 59, 1086–1104CrossRefGoogle Scholar
  12. Burke CP, Jones DL (1995) Global radiolocation in the lower ELF frequency band, J. Geophys. Res., 100, 26263–26271CrossRefGoogle Scholar
  13. Burpee RW (1976) Some features of global scale 4–5 day waves, J. Atmos. Sci., 33 2292–2299CrossRefGoogle Scholar
  14. Castro DS (2000) The relationship between precipitation and electromagnetic signals in Schumann resonances, M. Eng. Thesis, Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  15. Christian HJ, Blakeslee RJ, Boccippio DJ, Boeck WL, Buechler DE, Driscoll KT, Goodman SJ, Hall JM, Koshak WJ, Mach DM, Stewart MF (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108 (D1), 4005, doi:10.1029/2002JD002347CrossRefGoogle Scholar
  16. Chronis TG, Williams E, Anagnostou M, Petersen W (2007) African lightning: Indicator of tropical Atlantic cyclone formation. EOS, Transactions, American Geophysical Union, 88 (40),397–408CrossRefGoogle Scholar
  17. Chronis TG, Williams E, Anagnostou EN (2007) Evidence of tropical forcing of the 6.5-day wave from lightning observations over Africa, J. Atmos. Sci., 64, 3717–3721CrossRefGoogle Scholar
  18. Clayton M, Polk C (1977) Diurnal variation and absolute intensity of world-wide lightning activity, September 1970 to May 1971, in Electrical Processes in Atmospheres, H. Dolezalek and R. Reiter, Eds., Steinkopff, 440–449Google Scholar
  19. Cole RK Jr (1965) The Schumann resonances. Journal of Research of the National Bureau of Standards, 69D, 1345–1349Google Scholar
  20. Cummer SA, Inan US (1997) Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics, Geophys. Res. Lett., 24, 1731CrossRefGoogle Scholar
  21. Del Genio AD, Mao-Sung Y, Jonas J (2007) Will moist convection be stronger in a warmer climate? Geophys. Res. Lett., 34, L16703, doi:10.1029/2007GL030525CrossRefGoogle Scholar
  22. Engelstaedter S, Washington R (2007) Atmospheric controls on the annual cycle of North African dust, J. Geophys. Res., 112, D03103, doi:10.1029/2006JD007195CrossRefGoogle Scholar
  23. Füllekrug M (1994) Schumann-resonances in magnetic field components, J. Atmos. Terr. Phys., 57 (5), 479–484, 1994CrossRefGoogle Scholar
  24. Füllekrug M, Fraser-Smith AC (1996) Further evidence for global correlation of the Earth-ionosphere cavity resonances, Geophys. Res. Lett., 23, 2773–2776CrossRefGoogle Scholar
  25. Füllekrug M, Fraser-Smith A (1997) Global lightning and climate variability inferred from ELF field variations, Geophys. Res. Lett., 24, 2411–2414CrossRefGoogle Scholar
  26. Füllekrug M, Fraser-Smith AC, Bering EA, Few AA (1999) On the hourly contribution of global cloud-to-ground lightning activity to the atmospheric electric field, J. Atmos. Sol. Terr. Phys., 61, 745–750CrossRefGoogle Scholar
  27. Füllekrug M, Constable S (2000) Global triangulation of intense lightning discharges, Geophys. Res. Lett., 27, 3, 333CrossRefGoogle Scholar
  28. Füllekrug M, Price C, Yair Y, Williams ER (2002) Oceanic lightning, Ann. Geophys., 20, 133–137Google Scholar
  29. Greenberg E, Price C, Yair Y, Ganot M., Bór J, Sátori G (2007) ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms, J. Atmos. Solar-Terr. Physics, 69, 1569–1586CrossRefGoogle Scholar
  30. Greifinger C, Greifinger P (1978) Approximate method for determining ELF eigenvalues in the Earth-ionosphere waveguide. Radio Science 13, pp. 831–837CrossRefGoogle Scholar
  31. Greifinger P, Mushtak V, Williams E (2005) The lower characteristic ELF altitude of the Earth-ionosphere waveguide: Schumann resonance observations and aeronomical estimates. Proc. of VI International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology ( St.-Petersburg, Russia), pp. 250–254Google Scholar
  32. Greifinger PS, Mushtak VC, Williams ER (2007) On modeling the lower characteristic ELF altitude from aeronomical Data, Radio Science 42, RS2S12, doi:10.1029/2006RS003500CrossRefGoogle Scholar
  33. Hansen JE, Lebedeff S (1987) Global trends of measured surface air temperature, J. Geophys. Res., 92, 13345–13372CrossRefGoogle Scholar
  34. Hargreaves JK (1992) The Solar-Terrestrial Environment. Cambridge University Press, 420Google Scholar
  35. Harrison H (2006) Atmospheric voltage gradients at the Kennedy Space Center, 1997–2005: No evidence for effects of global warming or modulation by galactic cosmic rays, Geophys. Res. Lett., 33, L10814, doi:10.1029/2006GL025880CrossRefGoogle Scholar
  36. Harrison RG, and Ingram WJ (2005) Air-earth current measurements at Kew, London, 1909–1979, Atmos. Res., 76, 49–64CrossRefGoogle Scholar
  37. Harrison RG (2002) Twentieth century secular decrease in the atmospheric potential gradient Geophys. Res. Lett., 29, 10.1029/2002GL014878CrossRefGoogle Scholar
  38. Hayakawa M, Sekiguchi M, Hobara Y, Nickolaenko AP (2006) Intensity of Schumann resonance oscillations and the ground surface temperature, J. Atmos. Electr., 26, 79–93Google Scholar
  39. Heckman S (1998) The day-night asymmetry, paper presented at Schumann Resonance Symposium and Workshop, U. S.-Hung. Sci. and Technol. Joint Fund, Sopron, Hungary, 7–10 SeptGoogle Scholar
  40. Heckman S, Williams E, Boldi R (1998) Total global lightning inferred from Schumann resonance measurements, J. Geophys. Res., 103, 31775–31779CrossRefGoogle Scholar
  41. Herman A, Kumar V, Arkin P, Kousky J (1997) Objectively-determined 10-day African rainfall estimates created for famine early warning systems, Int. J. Remote Sensing, 18, 2147–2159CrossRefGoogle Scholar
  42. Hobara Y, Iwasaki N, Hayashida T, Tsuchiya N, Williams ER, Sera M, Ikegami Y, Hayakawa M (2000) New ELF observation site in Moshiri, Hokkaido, Japan and the results of preliminary data analysis, J. Atmos. Elec., 20, 99–109Google Scholar
  43. Hobara Y, Hayakawa M, Williams E, Boldi R, Downes E (2006) Location and electrical properties of sprite-producing lightning from a single ELF site, in Sprites, Elves and Intense Lightning Discharges. Ed. M. Füllekrug, E.A. Mareev and M.J. Rycroft, NATO Science Series, II. Mathematics, Physics and Chemistry 225, Springer, 398 ppGoogle Scholar
  44. Huang E, Williams E, Boldi R, Heckman S, Lyons W, Taylor M, Nelson T, Wong C (1999) Criteria for sprites and elves based on Schumann resonance observations, J. Geophys. Res., 104, 16943–16964CrossRefGoogle Scholar
  45. Ishaq M, Jones DL (1977) Method of obtaining radiowave propagation parameters for the Earth-ionosphere duct at E.L.F., Electronics Letters 13, pp. 254–255CrossRefGoogle Scholar
  46. Kemp DT (1971) The global location of large lightning discharges from single station observations of ELF disturbances in the Earth-ionospheric cavity, J. Atmos. Terr. Phys., 33, 919–928CrossRefGoogle Scholar
  47. Kemp DT, Jones DL (1971) A new technique for the analysis of transient ELF electromagnetic disturbances within the Earth-ionosphere cavity. J. Atmos. Terr. Phys., 33, 567–572CrossRefGoogle Scholar
  48. Kirillov VV, Kopeykin VN, Mushtak VC (1997) ELF electromagnetic waves within the Earth-ionosphere waveguide. Geomagnetizm i Aeronomiya, 37, 114–120 [in Russian]Google Scholar
  49. Kirillov VV (2002) Solving a two-dimensional telegraph equation with anisotropic parameters. Radiophysics and Quantum Electronics, 45, 929–941CrossRefGoogle Scholar
  50. Lay EH, Jacobson AR, Holzworth RH, Rodger CJ, Dowden RL (2007) Local time variation in land/ocean lightning count rates as measured by the World Wide Lightning Location Network, J. Geophys. Res., 112, D13111, doi:10.1029/2006JD007944CrossRefGoogle Scholar
  51. Lele MI, Lamb PJ (2007) Variability of intertropicalfront and rainfall over West African Soudano-Sahelzone, African Monsoon and Multidisciplinary Analysis, 2nd International Conference, (Ed’s. I. Genau, E.van den Akker and J.-L. Redelsperger,page 28,Karlsruhe, Germany,November)Google Scholar
  52. Madden T, Thompson W (1965) Low frequency electromagnetic oscillations of the Earth-ionosphere cavity. Rev. Geophys., 3, 211–254CrossRefGoogle Scholar
  53. Madden R, Julian P (1972a) Further evidence of global-scale, 5-day pressure waves, J. Atmos. Sci., 29, 1464–1469CrossRefGoogle Scholar
  54. Madden R, Julian P (1972b) Description of global scale circulation cells in the tropics with a 40–50 day period, J. Atmos. Sci., 29, 1109–1123CrossRefGoogle Scholar
  55. Madden R, Julian P (1994) Observation of the 40–50 day tropical oscillation—A review, Mon. Wea. Rev., 122, 814–837CrossRefGoogle Scholar
  56. Märcz F, Harrison RG (2003) Long-term changes in atmospheric electrical parameters observed at Nagycenk (Hungary) and the UK observatories at Eskdalemuir and Kew, Ann. Geophys., 21, 2193–2200Google Scholar
  57. Markson R (2007) The global circuit intensity: Its measurement and variation over the last 50 years, Bull. Am. Met. Soc., DOI:10.1175/BAMS-88-2-223, 223-241Google Scholar
  58. MushtakV, Boldi R, Williams E (1999) Schumann resonances and the temporal-spatial dynamics of global thunderstorm activity. Proc. of XI International Conference on Atmospheric Electricity (Guntersville, Alabama), pp. 698–700Google Scholar
  59. Mushtak VC, Williams E (2002) ELF propagation parameters for uniform models of the Earth-ionosphere waveguide, J. Atmos. Solar-Terr. Phys., 64, 1989–2001CrossRefGoogle Scholar
  60. Mushtak VC, Williams ER (2008) An improved Lorentzian technique for evaluating resonance characteristics of the Earth-ionosphere cavity, Atmospheric Research, (in review)Google Scholar
  61. Neska M, Sátori G (2006) Schumann resonance observation at Polish Polar Station at Spitsbergen as well as in Central Geophysical Observatory in Belsk, Poland, Przegl. Geofiz. Engl. Transl., 3–4, 189Google Scholar
  62. Nickolaenko AP, Rabinowicz LM (1995) Study of the annual changes of global lightning distribution and frequency variations of the first Schumann resonance mode, J. Atmos. Terr. Phys., 57, 1345–1348CrossRefGoogle Scholar
  63. Nickolaenko AP, Sátori G, Zieger B, Rabiniwicz LM, Kudintseva IG (1998) Parameters of global thunderstorm activity deduced from long-term Schumann resonance records. J. Atmos. Sol. Terr. Phys., 60, 387–399CrossRefGoogle Scholar
  64. Nickolaenko AP, Hayakawa M, Hobara Y (1999) Long-term periodic variations in the global lightning activity deduced from the Schumann resonance monitoring, J. Geophys. Res., 104(D22), 27 585.27 591CrossRefGoogle Scholar
  65. Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth-ionosphere cavity, Kluwer Academic PublishersGoogle Scholar
  66. Nickolaenko AP, Hayakawa M (2007a) Diurnal variations in Schumann resonance intensity in local and universal times, J. Atmos. Elec., 27, 83–93Google Scholar
  67. Nickolaenko AP, Hayakawa M (2007b) Recent studies of Schumann resonances and ELF transients, J. Atmos. Elec., 27, 19–39Google Scholar
  68. Ogawa T, Tanaka Y, Yasuhara M (1967) Worldwide simultaneity of occurrence of a Q-type ELF burst, J. Geomagnetism and Geoelectricity, 377–384Google Scholar
  69. Ogawa T, Tanaka Y, Yasuhara M (1969) Schumann resonances and worldwide thunderstorm activity, in Planetary Electrodynamics, Vol. 2, Ed., S.C. Coroniti and J. Hughes, Gordon and Breach, New YorkGoogle Scholar
  70. Ogawa T, Komatsu M (2008) Q-Bursts from various distances on the Earth, Atmospheric Research, (in press)Google Scholar
  71. Ondrášková A, Kostecký P, Ševčík S, Rosenberg L (2007) Long-term observations of Schumann resonances at Modra Observatory, Radio Sci. , 42, RS2S09, doi:10.1029/2006RS003478CrossRefGoogle Scholar
  72. Orlanski I, Polinksy LJ (1977) Spatial distribution of cloud cover over Africa, J. Met. Soc. Japan, 55, 5Google Scholar
  73. Patel AC (2001) Modulation of African lightning and rainfall by the global 5-day wave, M. Eng. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  74. Pinto O Jr, Pinto IRCA (2008) About the sensitivity of cloud-to-ground lightning activity to surface air temperature changes at different time scales in the city of Sao Paulo, Brazil, J. Geophys. Res., (in press)Google Scholar
  75. Price C (2000) Evidence for a link between global lightning activity and upper tropospheric water vapor, Nature, 406, 290–293CrossRefGoogle Scholar
  76. Price C, Rind D (1994) Possible implications of global climate change on global lightning distributions and frequencies, J. Geophys. Res., 99, 10823–10831CrossRefGoogle Scholar
  77. Price C, Melnikov A (2004) Diurnal, seasonal and interannual variations in Schumann resonance parameters, J. Atmos. Sol. Terr. Phys., 66, 1179–1185Google Scholar
  78. Price C, Greenberg E, Yair Y, Sátori G, Bór J, Fukunishi H, Sato M, Israelevich P, Moalem M, Devir A, Levin Z, Joseph HJ, Mayo I, Ziv B, Sternlieb A (2004) Ground-based detection of TLE-producing intense lightning during the MEIDEX mission on board the space shuttle Columbia, Geophys. Res. Lett., VOL. 31, L20107,doi:10.1029/2004GL020711CrossRefGoogle Scholar
  79. Price C, Asfur M (2006) Can lightning observations be used as an indicator of upper-tropospheric water vapor availability, Bull. Am. Met. Soc., 87, 291–298CrossRefGoogle Scholar
  80. Ramel R, Gallée H, Messager C (2006) On the northward shift of the West African monsoon, Climate Dynamics, DOI 10.10078/s00382-005-0093-5Google Scholar
  81. Retalis DA (1981) Study of the air-earth current density in Athens, Pageoph., 136, 217–233CrossRefGoogle Scholar
  82. Roemer HR (1961) On Extremely Low Frequency Spectrum of the Earth-Ionosphere Cavity Response to Electrical Storms. J. Geophys. Res., 66, 1580–1584CrossRefGoogle Scholar
  83. Roldugin VC, Maltsev YV, Vasiljev AN, Schokotov AY, Belyajev GG (2004) Schumann resonance frequency increase during solar X-ray bursts. Journal of Geophysical Research 109, A01216CrossRefGoogle Scholar
  84. Sato M, Fukunishi H, Kikuchi M, Yamagishi H, Lyons WA (2003) Validation of sprite-inducing cloud-to-ground lightning based on ELF observations at Showa station in Antarctica, J. Atmos. Sol. Terr. Phys., 65, 607–614CrossRefGoogle Scholar
  85. Sátori G, Szendrői J, Verő J (1996) Monitoring Schumann resonances – I. Methodology, J. Atmos. Terr. Phys., 58 (13), 1475–1481CrossRefGoogle Scholar
  86. Sátori G (1996) Monitoring Schumann resonances – II. Daily and seasonal frequency variations, J. Atmos. Terr. Phys., 58 (13), 1483–1488CrossRefGoogle Scholar
  87. Sátori G, Zieger B (1996) Spectral characteristics of Schumann resonances observed in central Europe, J. Geophys. Res., 101, 29663–29669CrossRefGoogle Scholar
  88. Sátori G, Zieger B (1999) El Niňo-related meridional oscillation of global lightning activity, Geophys. Res. Lett., 26, 1365–1368CrossRefGoogle Scholar
  89. Sátori G, Williams E, Zieger B, Boldi R, Heckman S, Rothkin K (1999) Comparisons of long-term Schumann resonance records in Europe and North America, 11^th International Conference on Atmospheric Electricity, NASA/CP-1999–209261, 705–708, Guntersville, Alabama,June 7–11Google Scholar
  90. Sátori G, Neska M, Williams E, Szendrői J (2007) Signatures of the non-uniform Earth-ionosphere cavity in high-time resolution Schumann resonance records, Radio Science, Vol.42,No.2,RS2S10 10.1029/2006RS003483CrossRefGoogle Scholar
  91. Sátori G, Williams E, Lemperger I (2008) Variability of global lightning activity on the ENSO time scale, Atmospheric Research, (in print)Google Scholar
  92. Schumann WO (1952) Über die strahlunglosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionospharenhülle umgeben ist, Z. Naturforsch. A, 7, 6627– 6628Google Scholar
  93. Sekiguchi M, Hayakawa M, Nickolaenko AP, Hobara Y (2006) Evidence for a link between the intensity of Schumann resonances and global surface temperature, Ann. Geophys., 24, 1809–1817CrossRefGoogle Scholar
  94. Sekiguchi M, Hobara Y, Hayakawa M (2008) Diurnal and seasonal variations in the Schumann resonance parameters at Moshiri, J. Atmos. Electr., 28, 1–10Google Scholar
  95. Sentman DD (1987) PC monitors lightning worldwide, Computer Science, 1, 25Google Scholar
  96. Sentman DD (1987) Magnetic elliptical polarization of Schumann resonances. Radio Science,22, 595CrossRefGoogle Scholar
  97. Sentman DD (1995) Schumann Resonances, in Handbook of Atmospheric Electrodynamics, vol. 1, edited by H. Volland, p. 276, CRC Press, LondonGoogle Scholar
  98. Simpson JJ, Taflove A (2006) A novel ELF radar for major oil deposits, IEEE Geoscience and Remote Sensing Lett., 3(1), 36CrossRefGoogle Scholar
  99. Talaat ER, Yee JH, Zhu X (2001) Observations of the 6.5 day wave in the mesosphere and lower thermosphere, J. Geophys. Res., 106, 20715–20724CrossRefGoogle Scholar
  100. Toracinta ER, Zipser EJ (2001) Lightning and SSM/I-Ice-scattering mesoscale convective systems in the global tropics, J. Appl. Met., 40, 983–1002CrossRefGoogle Scholar
  101. Trenberth KE (1981) Seasonal variation in global sea level pressure and the total mass of the atmosphere, J. Geophys. Res., 86, 5238–5246CrossRefGoogle Scholar
  102. Verő J (1972) On the determination of the magneto-telluric impedance tensor. Acta Geod. Geophys. Mont. Acad. Sci. Hung. 7(3–4), 333–351Google Scholar
  103. Wait JR (1962) Electromagnetic Waves in Stratified Media, 2nd ed., Pergamon Press, New York, NY, p. 153, Section 5Google Scholar
  104. Williams ER (1992) The Schumann resonance: A global tropical thermometer, Science, 256, 1184–1187CrossRefGoogle Scholar
  105. Williams ER (1994) Global circuit response to seasonal variations in global surface air temperature, Mon. Wea. Rev., 122, 1917–1929CrossRefGoogle Scholar
  106. Williams ER (1998) The positive charge reservoir for sprite-producing lightning, J. Atmos. Sol. Terr. Phys., 60, 689–692CrossRefGoogle Scholar
  107. Williams ER (1999) Global circuit response to temperature on distinct time scales: A status report, in Atmospheric and Ionospheric Phenomena Associated with Earthquakes, Ed., M. Hayakawa), Terra Scientific Publishing (Tokyo)Google Scholar
  108. Williams ER (2003) Comments on: “Twentieth century secular decrease in the atmospheric potential gradient” by Giles Harrison: Global changes in current or local changes in air pollution?, Geophys. Res. Lett., doi:10.1029/2003GL017094Google Scholar
  109. Williams ER (2005) Lightning and climate: A review, Atmospheric Research, 76, 272–287CrossRefGoogle Scholar
  110. Williams ER (2008) The global electrical circuit: A review, Atmospheric Research, in final reviewGoogle Scholar
  111. Williams ER, Renno NO (1993) An analysis of the conditional instability of the tropical atmosphere, Mon. Wea. Rev., 121, 21–36CrossRefGoogle Scholar
  112. Williams ER (2001) Sprites, elves and glow discharge tubes, Physics Today, November, 41–47Google Scholar
  113. Williams ER, Coauthors (2002) Contrasting convective regimes over the Amazon: Implications for cloud electrification, J. Geophys. Res., LBA Special Issue, 107, D20, 8082, doi:10.1029/2001JD000380CrossRefGoogle Scholar
  114. Williams E, Stanfill S (2002) The physical origin of the land-ocean contrast in lightning activity, Comptes Rendus—Physique, 3, 1277–1292CrossRefGoogle Scholar
  115. Williams ER, Sátori G (2004) Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys, J. Atmos. Sol. Terr. Phys., 66, 1213–1231CrossRefGoogle Scholar
  116. Williams E, Markson R, Heckman S (2005) Shielding effects of trees on the measurement of the Earth’s electric field: Implications for secular variations of the global electrical circuit, Geophys. Res. Lett., 32, L19810, doi:10.1029/2005GL023717CrossRefGoogle Scholar
  117. Williams ER, Mushtak VC, Rosenfeld D, Goodman SJ, Boccippio DJ (2005) Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate, Atmospheric Research, 76, 288–306CrossRefGoogle Scholar
  118. Williams E, Boldi R, Bór J, Sátori G, Price G, Greenburg E, Takahashi Y, Yamamoto K, Chronis T, Anagnostou E, Smith D, Lopez L (2006) Lightning flashesconducive to the production and escape of gamma radiation to space, J. Geophys. Res., 111, D16209, doi:10.1029/2005JD006447Williams ER, Mushtak VC, Nickolaenko AP (2006) Distinguishing ionospheric models using Schumann resonance spectra. J. Geophys. Res., 111, D16107, doi:10.1029/2005JD006944CrossRefGoogle Scholar
  119. Williams ER, Yair Y (2006) The microphysical and electrical properties of sprite-producing thunderstorms, in Sprites, Elves and Intense Lightning Discharges, Ed. M. Füllekrug, E.A. Mareev and M. J. Rycroft, NATO Science Series, II Mathematics, Physics and Chemistry- Vol. 225, SpringerGoogle Scholar
  120. Williams E, Downes E, Boldi R, Lyons W, Heckman S (2007) Polarity asymmetry of sprite-producing lightning: A paradox?, Radio Sci., 42, RS2S17, doi:10.1029/2006RS003488CrossRefGoogle Scholar
  121. Williams ER, Mushtak VC, Boldi R, Dowden RL, Kawasaki Z-I (2007) Sprite lightning hear around the world by Schumann resonance methods, Radio Science. 42, RS2S20, doi:10.1029/2006RS003498CrossRefGoogle Scholar
  122. Williams ER, Mushtak VC, Boldi R, Dowden RL, Kawasaki Z-I (2008) Reply to Comment by A. Nickolaenko and M. Hayakawa on Manuscript “Sprite Lightning Heard round the World by Schumann Resonance Methods” (accepted for publication in Radio Science)Google Scholar
  123. Wormell TW (1930) Vertical electric currents below thunderstorms and showers, Proc. Roy. Soc., A, 127, 567–590CrossRefGoogle Scholar
  124. Wormell TW (1953) Atmospheric electricity: some recent trends and problems, Quart. J. Roy. Met. Soc., 79, 474–489CrossRefGoogle Scholar
  125. Yang H, Pasko VP (2005) Three dimensional finite difference time domain modeling of the Earth – ionosphere cavity resonances, Geophys. Res. Lett., 32, L03114, doi:10.1029/2004GL021343CrossRefGoogle Scholar
  126. Zhang X, Friedl MA, Schaaf CB, Strahler AH (2005) Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments, J. Geophys. Res., 110, D2103, doi:10.1029/2004JD005263CrossRefGoogle Scholar
  127. Zieger B, Sátori G (1999) Periodic variations of solar and tropospheric origins in Schumann resonances, Proceeding of the 11^th International Confence on Atmospheric Electricity, Alabama, USA, 701–704Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gabriella Sátori
    • 1
  • Vadim Mushtak
  • Earle Williams
  1. 1.Geodetic and Geophysical Research Institute HAS9400 SopronHungary

Personalised recommendations