Integrated Servers for Structure-Informed Function Prediction

No single method for predicting a protein's function from its three-dimensional structure is perfect; some methods work well in some cases, whereas other methods perform better in others. Consequently, it makes sense to apply a number of different predictive methods to a given protein structure and obtain either a consensus or the most likely prediction from them all. In this chapter we describe two web servers, ProKnow (http://proknow.mbi.ucla.edu) and ProFunc (http://www.ebi.ac.uk/profunc), that use a cocktail of methods for predicting function from 3D structure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, Madden TL, Schaffer AA, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Anantharaman V, Aravind L, Koonin EV (2003) Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins Curr Opin Chem Biol 7:12–20PubMedCrossRefGoogle Scholar
  3. Aravind L, Anantharaman V, Balaji S, et al. (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29:231–262PubMedCrossRefGoogle Scholar
  4. Barker JA, Thornton JM (2003) An algorithm for constraint-based structural template matching: application to 3D templates with statistical analysis. Bioinformatics 19:1644–1649PubMedCrossRefGoogle Scholar
  5. Berrondo M, Ostermeier M, Gray JJ (2008) Structure prediction of domain insertion proteins from structures of individual domains. Structure 16:513–527PubMedCrossRefGoogle Scholar
  6. Bowers PM, Pellegrini M, Thompson MJ, et al. (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5:R35PubMedCrossRefGoogle Scholar
  7. Bryson K, McGuffin LJ, Marsden RL, et al. (2005) Protein structure prediction servers at University College London. Nucleic Acids Res 33:W36–W38PubMedCrossRefGoogle Scholar
  8. Camon E, Magrane M, Barrell D, et al. (2004) The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 32:D262–D266PubMedCrossRefGoogle Scholar
  9. Carugo O (2006) Rapid methods for comparing protein structures and scanning structure databases. Curr. Bioinformatics 1:75–83CrossRefGoogle Scholar
  10. Cuff ME, Li H, Moy S, et al. (2007) Crystal structure of an acetyltransferase protein from Vibrio cholerae strain N16961. Proteins 69:422–427PubMedCrossRefGoogle Scholar
  11. Fischer D, Eisenberg D (1997) Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium. Proc. Natl Acad Sci USA 94:11929–11934PubMedCrossRefGoogle Scholar
  12. Glaser F, Pupko T, Paz I, et al. (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163–164PubMedCrossRefGoogle Scholar
  13. Hermann JC, Ghanem E, Li Y, et al. (2006) Predicting substrates by docking high-energy intermediates to enzyme structures. J. Am. Chem. Soc. 128:15882–15891PubMedCrossRefGoogle Scholar
  14. Holm L, Sander C (1998) Touring the fold space with DALI/FSSP. Nucleic Acids Res. 26:316–319PubMedCrossRefGoogle Scholar
  15. Hulo N, Sigrist CJ, Le Saux V, et al. (2004) Recent improvements to the PROSITE database. Nucleic Acids Res. 32:D134–D137PubMedCrossRefGoogle Scholar
  16. Hutchinson EG, Thornton JM (1990) HERA: a program to draw schematic diagrams of protein secondary structures. Proteins 8:203–212PubMedCrossRefGoogle Scholar
  17. Jeffery CJ (1999) Moonlighting proteins. Trends Biochem. Sci. 24:8–11PubMedCrossRefGoogle Scholar
  18. Jones S, Barker JA, Nobeli I, et al. (2003) Using structural motif templates to identify proteins with DNA binding function. Nucleic Acids Res. 31:2811–2823PubMedCrossRefGoogle Scholar
  19. Kim SH, Shin DH, Choi IG, et al. (2003) Structure-based functional inference in structural genomics. J. Struct. Funct. Genomics 4:129–135PubMedCrossRefGoogle Scholar
  20. Kleywegt GJ (1999) Recognition of spatial motifs in protein structures. J. Mol. Biol. 285:1887–1897PubMedCrossRefGoogle Scholar
  21. Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D60:2256–2268Google Scholar
  22. Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities and intermolecular interactions. J. Mol. Graph. 13:323–330PubMedCrossRefGoogle Scholar
  23. Laskowski RA, Luscombe NM, Swindells MB, et al. (1996) Protein clefts in molecular recognition and function. Protein Science 5:2438–2452PubMedGoogle Scholar
  24. Laskowski RA, Chistyakov VV, Thornton JM (2005a) PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res. 33: D266–D268CrossRefGoogle Scholar
  25. Laskowski RA, Watson JD, Thornton JM (2005b) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 33:W89–W93CrossRefGoogle Scholar
  26. Laskowski RA, Watson JD, Thornton JM (2005c) Protein function prediction using local 3D templates. J. Mol. Biol. 352:614–626CrossRefGoogle Scholar
  27. Lichtarge O, Sowa ME (2002) Evolutionary predictions of binding surfaces and interactions. Curr. Opin. Struct. Biol. 12:21–27PubMedCrossRefGoogle Scholar
  28. Madabushi S, Yao H, Marsh M, et al. (2002) Structural clusters of evolutionary trace residues are statistically significant and common in proteins. J. Mol. Biol. 316:139–154PubMedCrossRefGoogle Scholar
  29. Mallick P, Weiss R, Eisenberg D (2002) The directional atomic solvation energy: an atom-based potential for the assignment of protein sequences to known folds. Proc. Natl. Acad. Sci. USA 99:16041–16046PubMedCrossRefGoogle Scholar
  30. Moult J (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15:285–289PubMedCrossRefGoogle Scholar
  31. Nagano N, Hutchinson EG, Thornton JM (1999) Barrel structures in proteins: automatic identification and classification including a sequence analysis of TIM barrels. Prot. Sci. 8:2072–2084CrossRefGoogle Scholar
  32. Novotny M, Madsen D, Kleywegt GJ (2004) Evaluation of protein fold comparison servers. Proteins 54:260–270PubMedCrossRefGoogle Scholar
  33. Orengo CA, Jones DT, Thornton JM (1994). Protein superfamilies and domain superfolds. Nature 372:631–634PubMedCrossRefGoogle Scholar
  34. Pal D, Eisenberg D (2005) Inference of protein function from protein structure. Structure 13:121–130PubMedCrossRefGoogle Scholar
  35. Pearson WR (1998) Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 276:71–84PubMedCrossRefGoogle Scholar
  36. Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 32: D129–D133PubMedCrossRefGoogle Scholar
  37. Quevillon E, Silventoinen V, Pillai S, et al. (2005) InterProScan: protein domains identifier. Nucleic Acids Res. 33:W116–W120PubMedCrossRefGoogle Scholar
  38. Rigden DJ (2006) Understanding the cell in terms of structure and function: insights from structural genomics. Curr. Opin. Biotechnol. 17:457–464PubMedCrossRefGoogle Scholar
  39. Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20:374–376PubMedCrossRefGoogle Scholar
  40. Shanahan HP, Garcia MA, Jones S, et al. (2004) Identifying DNA-binding proteins using structural motifs and the electrostatic potential. Nucleic Acids Res. 32:4732–41PubMedCrossRefGoogle Scholar
  41. Shrager J (2003) The fiction of function. Bioinformatics 19:1934–1936PubMedCrossRefGoogle Scholar
  42. Sierk ML, Pearson WR (2004) Sensitivity and selectivity in protein structure comparison. Protein Sci. 13:773–785PubMedCrossRefGoogle Scholar
  43. Stamm S, Ben-Ari S, Rafalska I, et al. (2005) Function of alternative splicing. Gene 344:1–20PubMedCrossRefGoogle Scholar
  44. The Gene Ontology Consortium (2000) Gene Ontology tool for the unification of biology. Nat. Genet. 25:25–29CrossRefGoogle Scholar
  45. Watson JD, Milner-White EJ (2002a) A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi,psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J. Mol. Biol. 315:171–182CrossRefGoogle Scholar
  46. Watson JD, Milner-White EJ (2002b) The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurrence in cation and anion-bind-ing regions of proteins. J. Mol. Biol. 315:183–191CrossRefGoogle Scholar
  47. Watson JD, Laskowski RA, Thornton JM (2005) Predicting protein function from sequence and structural data. Curr. Opin. Struct. Biol. 15:275–284PubMedCrossRefGoogle Scholar
  48. Watson JD, Sanderson S, Ezersky A, et al. (2007) Towards fully automated structure-based function prediction in structural genomics: a case study. J. Mol. Biol. 367:1511–1522PubMedCrossRefGoogle Scholar
  49. Wollacott AM, Zanghellini A, Murphy P, et al. (2007) Prediction of structures of multidomain proteins from structures of the individual domains. Protein Sci. 16:165–175PubMedCrossRefGoogle Scholar
  50. Xenarios I, Salwinski L, Duan XJ, et al. (2002) DIP, database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30:303–305PubMedCrossRefGoogle Scholar
  51. Yakunin AF, Yee AA, Savchenko A, et al. (2004) Structural proteomics: a tool for genome annotation. Curr. Opin. Chem. Biol. 8:42–48PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.European Bioinformatics InstituteWellcome Trust Genome CampusCambridgeUK

Personalised recommendations