Variation in Adult Size of Scaphitid Ammonites from the Upper Cretaceous Pierre Shale and Fox Hills Formation

  • Neil H. Landman
  • Susan M. Klofak
  • Kathleen B. Sarg
Part of the Topics in Geobiology book series (TGBI, volume 21)

The rich fossil record of ammonites provides an opportunity to investigate the size variation of an individual ammonite species over its geographic and temporal range. However, the requirements for such studies are daunting: a sufficiently large sample for statistical analysis, a series of closely spaced geographic localities with detailed stratigraphic data about the distribution of specimens at each locality, a means of precisely correlating from one stratigraphic section to another, a knowledge of the taxonomy of the species that takes into account the possibility of sexual dimorphism, and, finally, an understanding of the ontogeny of the species to facilitate comparisons of specimens at the same ontogenetic stage.

The ammonites in the Upper Cretaceous Western Interior Seaway satisfy many of these requirements. These ammonites are abundant, widely distributed, and occur in a well-documented lithostratigraphic and biostratigraphic sequence (see, for example, the numerous papers by W. A. Cobban and W. J. Kennedy). Among the ammonites from the Western Interior, none surpasses the scaphites in affording excellent material for study. They combine superb preservation, easily identifiable growth stages, and clearly defined dimorphs (Cobban, 1969). As in other ammonites (Calloman, 1981; Davis et al., 1996), the dimorphs are referred to as macroconchs (presumed to be the females) and microconchs (presumed to be the males).


Assemblage Zone Adult Size Body Chamber Locality Means Subtidal Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyle, P. R. (ed.), 1983, Cephalopod Life Cycles, Vol. 1, Academic Press, New York.Google Scholar
  2. Bucher, H., Landman, N. H., Klofak, S. M., and Guex, J., 1996, Mode and rate of growth in ammonoids, in: Ammonoid Paleobiology (N. H. Landman, K. Tanabe, and R. A. Davis, eds.), Plenum Press, New York, pp. 407-461.Google Scholar
  3. Callomon, J. H., 1981, Dimorphism in ammonoids, in: The Ammonoidea (House, M. R. and Senior, J. R., eds.), Syst. Ass. Sp. Vol. 18:257-273.Google Scholar
  4. Callomon, J. H., 1988, [Review of] Matyja, B. A., 1986, Developmental polymorphism in Oxfordian ammonites, Acta Geol. Pol. 36:37-68, Cephalopod Newsl. 9:14-16.Google Scholar
  5. Cobban, W. A., Merewether, E. A., Fouch, T. D., and Obradovich, J. D., 1994, Some Cretaceous shorelines in the Western Interior of the United States, in: Mesozoic Systems of the Rocky Mountain Region, USA (M. V. Caputo, J. A. Peterson, and K. Franczyk, eds.), SEPM Rocky Mountain Section, Denver, pp. 393-413.Google Scholar
  6. Cobban, W. A., 1969, The Late Cretaceous ammonites Scaphites leei Reeside and Scaphites hippocrepis (DeKay) in the Western Interior of the United States, U. S. Geol. Surv. Prof. Pap. 619:29 p.Google Scholar
  7. Davis, R. A., Landman, N. H., Dommergues, J.-L., Marchand, D., and Bucher, H., 1996, Mature modifications and dimorphism in ammonoid cephalopods, in: Ammonoid Paleobiology (N. H. Landman, K. Tanabe, and R. A. Davis, eds.), Plenum Press, New York, pp. 463-539.Google Scholar
  8. Eldredge, N., 1989, Macroevolutionary Dynamics, McGraw Hill, New York.Google Scholar
  9. Eldredge, N., and Gould, S. J., 1972, Punctuated equilibria: An alternative to phyletic gradualism, in: Models in Paleobiology (T. J. Schopf, ed.), Freeman, Cooper, San Francisco, pp. 82-115.Google Scholar
  10. Elmi, S., and Benshili, K. 1987, Relation entre la structuration tectonique, la composition des peuplements et l’évolution: exemple du Toarcien du Moyen-Atlas méridional (Maroc), Boll. Soc. Paleontol. Ital. 26:47-62.Google Scholar
  11. Gould, S. J., and Eldredge, N., 1977, Punctuated equilibria: the tempo and mode of evolution reconsidered, Paleobio. 3:115-151.Google Scholar
  12. Hallam, A., 1978, How rare is phyletic gradualism and what is its evolutionary significance? Evidence from Jurassic bivalves, Paleobio. 4:16-25.Google Scholar
  13. Hallam, A., 1998, Speciation patterns and trends in the fossil record, Geobios 30:921-930.CrossRefGoogle Scholar
  14. Hewitt, R. A., and Hurst, J. M., 1977, Size changes in Jurassic liparoceratid ammonites and their stratigraphic and ecological significance, Lethaia 10:287-301.CrossRefGoogle Scholar
  15. Kauffman, E. G., Sageman, B. B., Kirkland, J. I, Elder, W. P., Harries, P. J., and Villamil, T. 1993, Molluscan biostratigraphy of the Cretaceous Western Interior Basin, North America, in: Evolution of the Western Interior Basin (W. G. E. Caldwell and E. G. Kauffman, eds.), Geol. Assoc. Can. Sp. Pap. 39:397-434.Google Scholar
  16. Kemper, E., and Wiedenroth, K. 1987, Klima und Tier-Migrationen am Beispiel der frühkretazischen Ammoniten Nordwestdeutschlands, Geol. Jahr. A96:315-363.Google Scholar
  17. Kennedy, W. J., 1986a, The ammonite fauna of the Calcaire à Baculites (Upper Maastrichtian) of the Cotentin Peninsula (Manche, France), Palaeont. 29:25-83.Google Scholar
  18. Kennedy, W. J., 1986b, The ammonite fauna of the type Maastrichtian with a revision of Ammonites colligatus Binkhorst, 1861, Bull. Inst. R. Sci. Nat. Belg. 56:151-267.Google Scholar
  19. Landman, N. H., and Waage, K. M., 1993, Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming, Bull. Am. Mus. Nat. Hist. 215:1-257.Google Scholar
  20. Lieberman, B. S., Brett, C. E., and Eldredge, N., 1994, Patterns and processes of stasis in two species lineages of brachiopods from the Middle Devonian of New York State, Amer. Mus. Novitates 3114:1-23.Google Scholar
  21. Lieberman, B. S., Brett, C. E., and Eldredge, N., 1995, A study of stasis and change in two species lineages from the Middle Devonian of New York State, Paleobio. 21:15-27.Google Scholar
  22. Mancini, E. A., 1978, Origin of micromorph faunas in the geologic record, J. Paleontol. 52:311-322.Google Scholar
  23. Matyja, B. A., 1986, Developmental polymorphism in Oxfordian ammonites, Acta Geol. Pol. 36:37-68.Google Scholar
  24. Matyja, B. A., 1994, Developmental polymorphism in the Oxfordian ammonite subfamily Peltoceratinae, Palaeopelagos Special Publication 1, Proceedings of the 3rd Pergola International Symposium, Rome, pp. 277-286.Google Scholar
  25. Matyja, B. A., and Wierzbowski, A. 2000. Biological response of ammonites to changing environmental conditions: An example of Boreal Amoeboceras invasions into Submediterranean Province during Late Oxfordian, Acta Geol. Pol. 50:45-54.Google Scholar
  26. Mignot, Y., Elmi, S., and Dommergues, J.-L, 1993, Croissance et miniaturisation de quelques Hildoceras (Cephalopoda) en liasion avec des environnements contraignant de la Tethys toarcienne, Geobios. Mem. Spec. 15:305-312.CrossRefGoogle Scholar
  27. Morton, S. G., 1842, Description of some new species of organic remains of the Cretaceous Group of the United States with a tabular view of the fossils hitherto discovered in this formation, J. Acad. Nat. Sci. Phil. 8:207-227.Google Scholar
  28. Owen, D. D., 1852, Description of new and imperfectly known genera and species of organic remains, collected during the geological surveys of Wisconsin, Iowa, and Minnesota, in: Report of a Geological Survey of Wisconsin, Iowa, and Minnesota; and Incidentally of a Portion of Nebraska Territory, Lippincott, Philadelphia, pp. 573-587.Google Scholar
  29. Raup, D. M., and Crick, R. E., 1981, Evolution of single characters in the Jurassic ammonite Kosmoceras, Paleobio. 7:200-215.Google Scholar
  30. Reboulet, S. 2001. Limiting factors on shell growth, mode of life and segregation of Valanginian ammonoid populations: evidence from adult-size variations, Geobios 34:423-435.CrossRefGoogle Scholar
  31. Rhoads, D. C., Speden, I. G., and Waage, K. M., 1972, Trophic group analysis of Upper Cretaceous (Maastrichtian) bivalve assemblages from South Dakota, AAPG Bull. 56:1100-1113.Google Scholar
  32. Riccardi, A. C., 1983, Scaphitids from the Upper Campanian-Lower Maastrichtian Bearpaw Formation of the Western Interior of Canada, Geol. Surv. Can. Bull. 354:1-51.Google Scholar
  33. Stevens, G. R., 1988, Giant ammonites: A review, in: Cephalopods - Present and Past (J. Wiedmann and J. Kullmann, eds.) Schweizerbart’sche Verlagsbuchhandlungs, Stuttgart, pp. 141-166.Google Scholar
  34. Waage, K. M., 1964, Origin of repeated fossiliferous concretion layers in the Fox Hills Formation, Kansas Geol. Surv. Bull. 169:541-563.Google Scholar
  35. Waage, K. M., 1965, The Late Cretaceous coleoid cephalopod Actinosepia canadensis Whiteaves, Peabody Mus. Nat. Hist. Yale Univ. Postilla 94:1-33.Google Scholar
  36. Waage, K. M., 1968, The type Fox Hills Formation, Cretaceous (Maastrichtian), South Dakota, Part 1, stratigraphy and paleoenvironments, Peabody Mus. Nat. Hist. Yale Univ. Bull. 27:1-175.Google Scholar
  37. Williamson, P. G., 1981, Paleontological documentation of speciation in Cenozoic molluscs from Turkana Basin, Nature 293:437-443.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Neil H. Landman
    • 1
  • Susan M. Klofak
    • 1
    • 2
  • Kathleen B. Sarg
    • 1
  1. 1.American Museum of Natural HistoryNew York10024-5192
  2. 2.Department of BiologyCity College of the City University of New YorkNew York

Personalised recommendations