Advertisement

Quality of Instruction in Science Education

  • Knut NeumannEmail author
  • Alexander Kauertz
  • Hans E. Fischer
Chapter
Part of the Springer International Handbooks of Education book series (SIHE, volume 24)

Abstract

Instructional quality has been a central issue in educational research for a long time now. Models of school learning were proposed, a vast number of correlational studies were carried out, and lately large-scale video studies were undertaken in order to discern the factors that render one type of instruction superior to another. Although no single explanatory variable emerged, a suite of relevant factors can be identified. This chapter provides an overview of the research undertaken and specifically establishes five dimensions of characteristics that collectively define high quality instruction.

Keywords

Evaluation International assessments Learning Learning environment Teaching 

References

  1. Anderson, L. W. (1981). Instruction and time-on-task: A review. Journal of Curriculum Studies, 13, 289–303.CrossRefGoogle Scholar
  2. Anderson, R. D. (1983). A consolidation and appraisal of science meta-analyses. Journal of Research in Science Teaching, 20, 497–509.CrossRefGoogle Scholar
  3. Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart and Winston.Google Scholar
  4. Beaton, A. E., Martin, M. O., Mullis, I. V., Gonzalez, E. J., Smith, T. A., & Kelly, D. S. (1997). Science achievement in the middle school years: IEA’s Third International Mathematics and Science Study (TIMSS). Chestnut Hill, MA: Center for the Study of Testing, Evaluation, and Educational Policy, Boston College.Google Scholar
  5. Bloom, B. S. (1976). Human characteristics and school learning. New York: McGraw-Hill.Google Scholar
  6. Brophy, J. E., & Good, T. L. (1986). Teacher behavior and student achievement. In M. C. Wittrock (Ed.), Handbook of research on teaching (pp. 328–375). New York: Macmillan.Google Scholar
  7. Brophy, J. (1986). Teacher influences on student achievement. American Psychologist, 41, 1069–1077.CrossRefGoogle Scholar
  8. Bruner, J. S. (1966). Toward a theory of instruction. New York: W. W. Norton.Google Scholar
  9. Carroll, J. B. (1963). A model of school learning. Teachers College Record, 64, 723–733.Google Scholar
  10. Carroll, J. B. (1989). The Carroll model: A 25-year retrospective and prospective veiw. The Educational Researcher, 18, 26–31.Google Scholar
  11. Creemers, B. P. (1994). The effective classroom. London: Cassell.Google Scholar
  12. Dunkin, M. J., & Biddle, B. J. (1974). The study of teaching. New York: Holt, Rinehart and Winston.Google Scholar
  13. Evertson, C. M. (1985). Training teachers in classroom management: An experimental study in secondary school classrooms. Journal of Educational Research, 79, 51–58.Google Scholar
  14. Fraser, B. J., Walberg, H. J., Welch, W. W., & Hattie, J. A. (1987). Synthesis of educational productivity research. International Journal of Educational Research, 11, 145–252.CrossRefGoogle Scholar
  15. Gage, N. L. (1972). Teacher effectiveness and teacher education: The search for a scientific basis. Palo Alto, CA: Pacific.Google Scholar
  16. Gagné, R. M. (1965). The conditions of learning. New York: Holt, Rinehart and Winston.Google Scholar
  17. Good, T. (1979). Teacher effectiveness in elementary school. Journal of Teacher Education, 30, 52–64.CrossRefGoogle Scholar
  18. Gruehn, S. (2000). Unterricht und schulisches Lernen (Instruction and school learning). Münster, Germany: Waxmann.Google Scholar
  19. Hiebert, J., Gallimore, R., Garnier, H., Bogard Givvin, K., Hollingsworth, H., Jacobs, J., et al. (2003). Teaching mathematics in seven countires: Results from the TIMSS 1999 video study (NCES 2003–013 Revised). Washington, DC: U.S. Department of Education, National Center for Education Statistics.Google Scholar
  20. Hugener, I., Pauli, C., & Reusser, K. (2007). Inszenierungsmuster, kognitive Aktivierung und Leistung im Mathematikunterricht (Instructional patterns, cognitive activation and achievement in mathematics instruction). In D. Lemmermöhle, M. Rothgangel, S. Bögeholz, M.Hasselhorn, & R. Watermann (Eds.), Professionell Lehren – Erfolgreich Lernen (Professional teaching – Successful learning) (pp. 109–121). Münster, Germany: Waxmann.Google Scholar
  21. Lipowsky, F., Rakoczy, K., Vetter, B., Klieme, E., Reusser, K., & Pauli, C. (2005, April). Quality of geometry instruction and its impact on the achievement of students with different characteristics. Paper presented at the annual meeting of the American Educational Research Association, Montreal, Canada.Google Scholar
  22. Mortimer, E., & Scott, P. (2003). Meaning making in the secondary science classroom. Milton Keynes, UK: Open University Press.Google Scholar
  23. Organisation for Economic and Cultural Development (OECD). (2001). Knowledge and skills for lLfe – First results from PISA 2000. Paris: OECD.Google Scholar
  24. Rakoczy, K., Klieme, E., Drollinger-Vetter, B., Lipowsky, F., Pauli, C., & Reusser, K. (2007). Structure as a quality feature of instruction. In M. Prenzel (Ed.), Studies on the educational quality of schools (pp. 101–120). Münster, Germany: Waxmann.Google Scholar
  25. Reyer, T. (2004). Oberflächenmerkmale und Tiefenstrukturen im Unterricht (Surface characteristics and deep level structures of instruction). Berlin: Logos.Google Scholar
  26. Rosenshine, B. (1979). Content, time and direct instruction. In P. L. Peterson & H. Walberg (Eds.), Research on teaching (pp. 28–56). Berkeley, CA: McCutchan.Google Scholar
  27. Rosenshine, B., & Furst, N. (1971). Research on teacher performance criteria. In B. O. Smith (Ed.), Research in teacher education: A symposium (pp. 37–72). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  28. Roth, K. J., Druker, S. L., Garnier, H. E., Lemmens, M., Chen, C., Kawanaka, T., et al. (2006). Teaching science in five countries: Results from the TIMS 1999 video study (NCES 2006–011). Washington, DC: US Government Printing Office.Google Scholar
  29. Seidel, T., Prenzel, M., Rimmele, R., Herweg, C., Kobarg, M., Schwindt, K., et al. (2007). Science teaching and learning in German physics classrooms. In M. Prenzel (Ed.), Studies on the educational quality of schools (pp. 79–99). Münster, Germany: Waxmann.Google Scholar
  30. Seidel, T., Rimmele, R., & Prenzel, M. (2003). Gelegenheitsstrukturen beim Klassengespräch und ihre Bedeutung für die Lernmotivation Videoanalysen in Kombination mit Schülerselbsteinschätzungen (The structure of opportunities during classroom discourse and their influence on motivation to learn – Video analyses in combination with self-evaluations). Unterrichtswissenschaft, 31(2), 142–165.Google Scholar
  31. Seidel, T., Rimmele, R., & Prenzel, M. (2005). Clarity and coherence of learning goals as a scaffold for student learning. Learning and Instruction, 15, 539–556.CrossRefGoogle Scholar
  32. Shavelson, R., & Dempsey-Atwood, N. (1976). Generalizability of measures of teaching behavior. Review of Educational Research, 46, 553–611.Google Scholar
  33. Shuell, T. J. (1996). Teaching and learning in a classroom context. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 726–764). New York: Macmillan.Google Scholar
  34. Slavin, R. E. (1987). Quality, appropriateness, incentive and time: A model of instructional effectiveness. International Journal of Educational Research, 21, 141–157.CrossRefGoogle Scholar
  35. Stigler, J. W., Gonzales, P., Kawanaka, T., Knoll, S., & Serrano, A. (1999). The TIMSS Videotape Classroom Study: Methods and findings from an exploratory research project on eighth-grade mathematics instruction in Germany, Japan and the United States. Washington, DC: National Center for Education Statistics.Google Scholar
  36. Stigler, J., & Hiebert, J. (1997). Understanding and improving mathematics instruction: An overview of the TIMSS Video Study. Phi Detla Kappa, 79(1), 14–21.Google Scholar
  37. Tesch, M., & Duit, R. (2004). Experimentieren im Physikunterricht Ergebnisse einer Videostudie (Experiments in physics instruction – Results from a video study). Zeitschrift für Didaktik der Naturwissenschaften, 10, 51–69.Google Scholar
  38. van der Werf, G., Creeemers, B., de Jong, R., & Klaver, E. (2000). Evaluation of school improvement through an educational effectiveness model: The case of Indonesia’s PEQIP Project. Comparative Education Review, 44, 329–355.CrossRefGoogle Scholar
  39. Viiri, J., & Saari., H. (2004). Teacher talk in science education. In A. Laine (Ed.), Proceedings of the 21th annual symposium of the Finnish Association of Math and Science Education Research (pp. 448–466). Helsinki, Finland: University of Helsinki, Department of Applied Sciences of Education.Google Scholar
  40. Walberg, H. J. (1981). A psychological theory of educational productivity. In F. H. Farley & N. Gordon (Eds.), Psychology and education: The state of the union (pp. 81–108). Berkeley, CA: McCutchan.Google Scholar
  41. Walberg, H. J., Haertel, G. D., Pascarella, E., Junker, L. K., & Boulanger, F. D. (1981). Probing a model of educational productivity in science with national assessment samples of early adolescents. American Educational Research Journal, 18, 233–249.Google Scholar
  42. Wang, M. C., Haertel, G. D., & Walberg, H. J. (1990). What influences learning? A content analysis of review literature. Journal of Educational Research, 84, 30–43.Google Scholar
  43. Wayne, A. J., & Youngs, P. (2003). Teacher characteristics and student achievement gains: A review. Review of Educational Research, 73, 89–122.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Knut Neumann
    • 1
    Email author
  • Alexander Kauertz
    • 2
  • Hans E. Fischer
    • 3
  1. 1.Department of Physics EducationLeibniz Institute for Science EducationKielGermany
  2. 2.Department of PhysicsUniversity of Education at WeingartenWeingartenGermany
  3. 3.Faculty of PhysicsUniversity of Duisburg-EssenEssenGermany

Personalised recommendations