This article aims at introducing the application of remote sensing techniques to monitoring land degradation and desertification in arid regions based on a review on actually available methods and several pertinent case studies. It is considered that land degradation, a process of reduction in vegetation cover and water resource, soil erosion and of salinization, etc., is a subtle and progressive environmental change in time. It is therefore necessary to conduct multi-temporal or even time-series observation. Coarse resolution data can be used to reveal regional, continental and even global level environmental changes and target the “hotspots”. However it leaves many uncertainties. On the contrary, high and very high spatial resolution data are capable for highlighting such a subtle change in detail at local level. To avoid bad-interpretation, meteorological data should be combined in analyses to make sure that the differences in spectral reflectance observed are representing true changes but not climate related events like droughts. Furthermore, it is essential to link remote sensing with human activity to understand the mechanism of land degradation and its driving forces. In this way, remote sensing will be not only a powerful tool for providing dynamic information to monitor land surface changes and degradation on different scales but also for helping decision-making in producing relevant mitigation measures for sustainable resource exploitation.


Active dunes Desertification Land Degradation Vegetation Index Vulnerability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Byrne G. F., Crapper P. F., and Mayo K. K. 1980.Monitoring land-cover change by principal components analysis of multitemporal Landsat data, Remote Sensing of Environment, Vol.10, 175–184CrossRefGoogle Scholar
  2. Caselles V. and Garcia M. J. L. 1989.An alternative simple approach to estimate atmospheric correction in multitemporal studies, International Journal of Remote Sensing, Vol.10, 1127–1134CrossRefGoogle Scholar
  3. Chavez P. S., Jr. 1996.Image-based atmospheric correction — revisited and improved, Photogrammetric Engineering and Remote Sensing, Vol.62, n. 9, 1025–1036Google Scholar
  4. Courel M. -F., Kandel R. S., and Rasool S. I. 1984.Surface albedo and the Sahel drought, Nature, Vol.307, 528–531CrossRefGoogle Scholar
  5. Crist E. P. and Cicone, R. C. 1984a.Application of the Tasseled Cap concept to simulated Thematic Mapper data, Photogrammetric Engineering and Remote Sensing, Vol.50, 343–352Google Scholar
  6. Crist E. P. and Cicone R. C. 1984b.A physically-based transformation of thematic mapper data — The TM tasseled cap, IEEE Transaction on Geoscience and Remote Sensing, Vol.GE22, n. 3, 256–263CrossRefGoogle Scholar
  7. Dave J. V. 1980. Effect of atmospheric conditions on remote sensing of a surface of non- homogeneity, Photogrammetric Engineering and Remote Sensing, Vol.46, 1173Google Scholar
  8. Engvall J. L., Tubbs J. D., and Holmes Q. A. 1977.Pattern recognition of Landsat data based on temporal trend analysis, Remote Sensing of Environment, Vol.6, 303–314CrossRefGoogle Scholar
  9. Forse B. 1989.The myth of the marching desert, New Scientist, Vol.4, 31–32Google Scholar
  10. Gao J., Zha Y., and NI S. 2001.Assessment of the effectiveness of desertification rehabilitation measures in Yulin, North-western China using remote sensing, International Journal of Remote Sensing, Vol.22, n. 18, 3783–3795CrossRefGoogle Scholar
  11. Gordon S. 1980.Utilizing Landsat imagery to monitor land use change: a case study in Ohio, Remote Sensing of Environment, Vol.9, 189–196CrossRefGoogle Scholar
  12. Graetz R. D., Pech R. P., and Davis A. W. 1988.The assessment and monitoring of sparsely vegetated rangeland using calibrated Landsat data, International Journal of Remote Sensing, Vol.9, n. 7, 1201–1222CrossRefGoogle Scholar
  13. Hanan N. P., Prevost Y., Diouf A., and Diallo O. 1991.Assessment of desertification around deep wells in the Sahel using satellite imagery, Journal of Applied Ecology, Vol.28, 173–186CrossRefGoogle Scholar
  14. Hellden U. 1988.Desertification monitoring: is the desert encroaching?Desertification Control Bulletin, Vol.17, 8–12Google Scholar
  15. Hellden U. 1991.Desertification—time for an assessment, Ambio, Vol.20, 372–383Google Scholar
  16. Hill J. 1993.Monitoring land degradation and soil erosion in Mediterranean environments, ITC Journal, no. 4, Netherlands, 323–331Google Scholar
  17. Hill J., Mégier J., and Mehl W. 1995.Land degradation, soil erosion and desertification monitoring in Mediterranean ecosystems, Remote Sensing Reviews, Vol.12, 107–130Google Scholar
  18. Huete A. R. 1988.A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, Vol.25, 295–309CrossRefGoogle Scholar
  19. Huete A. R., Liu H. Q., Batchily K., and VanLeeuwen W. 1997.A comparison of vegetation indices global set of TM images for EOS-MODIS, Remote Sensing of Environment, Vol.59, 440–451CrossRefGoogle Scholar
  20. Hurd J. D., Wilson E. H., Lammey S., and Civco D. L. 2001.Characterization of Forest Fragmentation and Urban Sprawl using Time Sequential Landsat Imagery, Proceedings of 2001 ASPRS Annual Convention, St. Louis, MOGoogle Scholar
  21. Ingram K., Knapp E., and Robinson J. W. 1981.Change detection technique development for improved urbanized area delineation, Technical memorandum CSC/TM-81/6087, Computer Science Corporation, Silver Spring, MDGoogle Scholar
  22. Jensen J. R. and Toll D. L. 1982.Detecting residential land use development at the urban fringe, Photogrammetric Engineering and Remote Sensing, Vol.48, 629–643Google Scholar
  23. Justice C. O. 1986.Monitoring the grasslands of semi-arid African using NOAA-AVHRR data, International Journal of Remote Sensing, Vol.7, 1383–1409CrossRefGoogle Scholar
  24. Kaufman Y. J. and Sendra C. 1988.Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery, International Journal of Remote Sensing, Vol.9, n. 8, 1357–1381CrossRefGoogle Scholar
  25. Kaufman Y. J. and Tanré D. 1992.Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS, Proceedings of IEEE IGARS'92, 261–270, New YorkGoogle Scholar
  26. Kaufman Y. J. and Tanré D. 1996.Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: from AVHRR to EOS-MODIS, Remote Sensing of Environment, Vol.55, 65–79CrossRefGoogle Scholar
  27. Kauth R. J. and Thomas G. S. 1976. The Tasseled Cap.A Graph Description of the Spectral-Temporal Development of Agricultural Crops as Seen by Landsat, Proceedings of the 2nd International Symposium on Machine Processing of Remote Sensed Data, Purdue University, West Lafayette, IN, 4B41–4B51Google Scholar
  28. Koeln G. and Bissonnette J. 2000.Cross-Correlation Analysis: Mapping Landcover Changes with a Historic Landcover Database and a Recent, Single-Date, Multispectral Image, Proceedings 2000 ASPRS Annual Convention, Washington, DC Available at the website:
  29. Lambin E. F. 1997.Modelling and monitoring land-cover change processes in tropical regions, Progress in Physical Geography, Vol.21, no. 3, 375–393CrossRefGoogle Scholar
  30. Lambin E. F. and Strahler A. H. 1994.Change-vector analysis in multitemporal space: a tool to detect and categorize land cover change processes using high temporal resolution satellite data, Remote Sensing of Environment, Vol.48, 231–244CrossRefGoogle Scholar
  31. Lamprey H. F. 1975.Report on the desert encroachment reconnaissance in north Sudan, Oct. 21–Nov. 10, UNESCO/UNEP (mimeo), 16Google Scholar
  32. Li L., Lambin E., Wu W., and Servais M. 2003.Land-Cover Change in Tarim Basin (1964-2000): Application of Post-Classification Change Detection Technique, Proceedings of SPIE Vol.4890: Ecosystems Dynamics, Ecosystem-Society Interactions and Remote Sensing Applications for Semi-Arid and Arid Land, Editor(s): Pan, X.; Gao, W., etcGoogle Scholar
  33. Lillesand T. M. and Kiefer R. W. 1994.Remote Sensing and Image Interpretation(3th ed.), Wiley, New YorkGoogle Scholar
  34. Lupo F., Reginster I., and. Lambin E. F. 2001.Monitoring land-cover changes in West Africa with SPOT VEGETATION: Impact of natural disasters in 1998–1999, International Journal of Remote Sensing, Vol.22, 2633–2639CrossRefGoogle Scholar
  35. Malila W. A. 1980.Change Vector Analysis: an Approach for Detection Forest Changes with Landsat, 1980. Proceedings of the 6th Annual Symposium on Machine Processing of Remotely Sensed Data, Purdue University, West Lafayette, 326–335Google Scholar
  36. Malingreau J. P., Tucker C. J., and Laporte, N. 1989.AVHRR for monitoring global tropical deforestation, International Journal of Remote Sensing, Vol.10, 855–867CrossRefGoogle Scholar
  37. Mas J. F. 1999.Monitoring land-cover changes: a comparison of change detection techniques, International Journal of Remote Sensing, Vol.20, 139–152CrossRefGoogle Scholar
  38. Mertens B. and Lambin E. F. 2000.Land cover change trajectories in Southern Cameroon, Annals of the Association of American Geographers, Vol.90, 467–494CrossRefGoogle Scholar
  39. Price J. C. 1987.Calibration of satellite radiometers and the comparison of vegetation indices, Remote Sensing of Environment, Vol.21, 15–27CrossRefGoogle Scholar
  40. Qi J., Chehbouni A., Huete A. R., and Kerr Y. H. 1994. Modified soil adjusted vegetation index (MSAVI), Remote Sensing of Environment, Vol. 48, 119–126CrossRefGoogle Scholar
  41. Quattrochi D. A. and Godchild M. F. (Eds.). 1997.Scale in Remote Sensing and GIS, Lewis Publishers, Boca Raton, FL, p. 406Google Scholar
  42. Raffy M. 1994.Change of scale theory: a capital challenge for space observation of Earth, International Journal of Remote Sensing, Vol.12, 2353–2357, 1997CrossRefGoogle Scholar
  43. Richards J. A. and Jia X. 1999.Remote Sensing Digital Image Analysis — An Introduction(3rd ed.), Springer, New YorkGoogle Scholar
  44. Richter R. 1990.A fast atmospheric correction algorithm applied to Landsat TM images, International Journal of Remote Sensing, Vol.11, no. 1, 159–166CrossRefGoogle Scholar
  45. Rouse J. W., Hass R. H., Schell J. A., Deering, D. W., and Harlin, J. C. 1974.Monitoring the vernal advancement of natural vegetation, NASA/GSCF Final Report, Greenbelt, MD, 371Google Scholar
  46. Singh A. 1989.Digital change detection techniques using remotely sensed data, International Journal of Remote Sensing, Vol.10, no. 6, 989–1003CrossRefGoogle Scholar
  47. Skole D. and Tucker C. J. 1993.Tropical deforestation and Habitat Fragmentation in the Amazon: Satellite data from 1978 to 1988, Science, Vol.260, 1905–1909CrossRefGoogle Scholar
  48. Smith M. O., Adams J. B., and Gillespie A. R. 1990.Reference Endmembers for Spectral Mixture Analysis, Proceedings of the 5th Australasian Remote Sensing Conference, Perth, 331–340Google Scholar
  49. Smith O. B. and Koala S. 1999.Desertification: Myth and Realities, Canadian Science Writer's Annual General Meeting, May 27–29, 1999. Available at:
  50. Swain P. H. 1976.Land use classification and mapping by machine-assisted analysis of Landsat multispectral scanner data, Laboratory for Applications of Remote Sensing, Information Note: 112776, Purdue University, West Lafayette, INGoogle Scholar
  51. Thomas D. S. G. and Middleton N. J. 1994.Desertification: Exploding the Myth, Wiley, ChichesterGoogle Scholar
  52. Tucker C. J. 1979.Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment, Vol.8, 127–150CrossRefGoogle Scholar
  53. Tucker C. J., Justice C. O., and Prince S. D. 1986.Monitoring the grasslands in the Sahel 1984-1985, International Journal of Remote Sensing, Vol.7, 1571–1581CrossRefGoogle Scholar
  54. Tucker C. J., Dregne H. E., and Newcomb W. W. 1991.Expansion and contraction of Sahara Desert from 1980 to 1990, Science, Vol.253, 299–301CrossRefGoogle Scholar
  55. Woodcock C. E. and Strahler A. 1987.The factor of scale in remote sensing,Remote Sensing of Environment, Vol.21, 311–332CrossRefGoogle Scholar
  56. Wu W. 2003a.Application de la géomatique au suivi de la dynamique environnementale en zones arides, PhD thesis, Université de Paris 1Google Scholar
  57. Wu W. 2003b.Evaluation of land use and cover change in north Shaanxi, China, Photo- Interpretation, Vol.39, n. 2, 15–29, plates 35–45Google Scholar
  58. Wu W. 2003c.Land Use and Land Cover Changes in the Critical Areas in Northwestern China, Proceedings of the SPIE on Remote Sensing for Agriculture, Ecosystems, and Hydrology V, Vol.5232, 245–256, Edited by O. Manfred, D. Guido (published in Feb. 2004)Google Scholar
  59. Wu W. 2004.Environmental Change Monitoring — A Case Study in the Region of Yinchuan, Ningxia, China, Proceedings of Map Asia 2004, Beijing, Aug. 26–29, 2004Google Scholar
  60. Wu W. 2007.Coastline evolution monitoring and estimation — a case study in the region of Nouakchott, Mauritania, International Journal of Remote Sensing, Vol.28, n. 24, 5461–5484CrossRefGoogle Scholar
  61. Wu W., Lambin E. F., and Courel M.-F. 2002.Land Use and Cover Change Detection and Modeling for North Ningxia, China, Proceedings of Map Asia 2002, Bangkok, Thailand, Aug. 6–9, 2002. Available at:
  62. Wu W., Zucca C., and Enne G. 2005.Land Degradation Monitoring in the Ordos Region, China, Proceedings of Remote Sensing and Geoinformation Processing in the Assessment and Monitoring of Land Degradation and Desertification (RGLDD), p. 618–625, Sept. 7–9, 2005, University of Trier, GermanyGoogle Scholar
  63. Young S. S. and Wang C. Y. 2001.Land-cover change analysis of China using global- scale Pathfinder AVHRR Land cover (PAL) data, 1982–92, International Journal of Remote Sensing, Vol.22, n. 8, 1457–1477CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.International Center for Agricultural Research in Dry Areas (ICARDA)AleppoSyria

Personalised recommendations