Adaptation and Thermal Environment

  • Gerd Jendritzky
  • Richard de Dear
Part of the Biometeorology book series (BIOMET, volume 1)

Abstract Due to the need for human beings to adapt their heat budget to the thermal environment in order to optimise comfort, performance and health the adaptation issue is a question of vital importance. Balancing the human heat budget, i.e. equilibration of the organism to variable environmental (atmospheric) and metabolic heat loads is controlled by a very efficient (for healthy people) autonomous thermoregulatory system that is additionally supported by behavioural adaptation which are driven by conscious sensations of thermal discomfort. These capabilities enable the (healthy) human being to live and to work in virtually any climate zone on earth, albeit with varying degrees of discomfort. Based on mortality studies a large number of publications show the evidence of adverse health impacts by thermal stresses, in particular during heat waves.

Based on thermo physiology and heat exchange theory an overview is given on different assessment approaches up to the development of the “Universal Thermal Climate Index” within ISB Commission 6 and the European COST Action 730. Selected applications from the weather/climate and human health field such as Heat Health Warning Systems HHWS and precautionary planning in urban areas illustrate the significance of thermal assessments with respect to short-term and long-term adaptation. A huge potential to save energy—and by this to avoid CO2 emissions— without loosing acceptable thermal conditions indoors, also in a future warmer climate, results from a adaptive model which has been derived from thermal comfort investigations across the world.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali-Toudert F and Mayer H (2006) Thermal comfort in an east-west oriented street canyon in Freiburg (Germany) under hot summer conditions. Theor. Appl. Climatol. DOI 10.1007/ s00704–005–0194–4Google Scholar
  2. ASHRAE (2004) ASHRAE Standard 55–2004: Thermal Environmental Conditions for Human Occupancy. ASHRAE, Atlanta, GAGoogle Scholar
  3. Auliciems A (1981) Towards a psycho-physiological model of thermal perception. Int. J. Biometeorol. 25: 109–122CrossRefGoogle Scholar
  4. Auliciems A (1986) Air conditioning in Australia III: Thermobile controls. Archit. Sci. Rev. 33: 43–48Google Scholar
  5. Beniston M (2004) The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 31, L02202: 1–4Google Scholar
  6. Blazejczyk K (1994) New climatological- and -physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zeszyty IgiPZ PAN 28: 27–58Google Scholar
  7. Brager GS, Paliaga G and de Dear RJ (2004) Operable windows, personal control and occupant comfort. ASHRAE Trans. 110, 2: 510–526Google Scholar
  8. Brücker G (2005) Vulnerable populations: lessons learnt from the summer 2003 heat waves in Europe. Euro Surveill 10, 7: www.eurosurveillance.org
  9. Büttner K (1938) Physikalische Bioklimatologie. Probleme und Methoden. Akad. Verl. Ges., Leipzig, 155 pp.Google Scholar
  10. COST UTCI (2004) Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being. MoU of COST Action 730. www.utci.org. pp. 17
  11. Driscoll DM (1992) Thermal comfort indexes. Current uses and abuses. Nat. Weather Digest 17, 4: 33–38Google Scholar
  12. De Dear RJ and Brager G (1998) Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 104, 1a: 145–167Google Scholar
  13. De Dear R and Pickup J (2000) An outdoor thermal environment index (OUT_SET*)—Part II -Applications. In: R. De Dear, J. Kalma, T. Oke, A. Auliciems (eds.), Biometeorology and Urban Climatology at the Turn of the Millennium. Selected Papers from the Conference ICB-ICUC'99 (Sydney, 8–12 Nov. 1999). WMO, Geneva, WCASP 50: 258–290Google Scholar
  14. De Dear RJ and Brager GS (2002) Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55, Energ. Build. 34: 549–561CrossRefGoogle Scholar
  15. EPA (2006) Excessive Heat Events Guidebook. EPA 430-B-06–005. www.epa.gov/heatislands/ about/heatguidebook
  16. Fanger PO (1970) Thermal comfort. Analysis and application in environment engineering. Danish Technical Press, CopenhagenGoogle Scholar
  17. Fiala D, Lomas KJ and Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: The passive system. J. Appl. Physiol. 87, 5: 1957–1972Google Scholar
  18. Fiala D, Lomas KJ and Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int. J. Biometeorol. 45: 143–159CrossRefGoogle Scholar
  19. Fiala D, Lomas KJ and Stohrer M (2003) First principles modeling of thermal sensation responses in steady-state and transient conditions. ASHRAE Trans. Res. 109, Part I: 179–186Google Scholar
  20. Friedrich M, Grätz A, Jendritzky G (2001) Further development of the urban bioclimate model UBIKLIM, taking local wind systems into account. Met. Z. 10, 4: 267–272CrossRefGoogle Scholar
  21. Gagge AP, Fobelets AP and Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans. 92: 709–731Google Scholar
  22. Givoni B (1976) Man, Climate and Architecture. Applied Science Publishers, London, pp. 483Google Scholar
  23. Grätz A, Jendritzky G, Sievers U (1992) The Urban Bioclimate Model of the Deutscher Wetterdienst. In: K Höschele (ed.) Proceedings of the Symposium on Planning Applications of Urban and Building Climatology in Berlin 14–15 Oct., 1991, Wiss. Ber. IMK, Karlsruhe: 96–105Google Scholar
  24. Havenith G (2001) An individual model of human thermoregulation for the simulation of heat stress response. J. Appl. Physiol. 90: 1943–1954Google Scholar
  25. Havenith G (2005) Temperature regulation, heat balance and climatic stress. In: W. Kirch, B. Menne, R. Bertollini (eds.), Extreme Weather Events and Public Health Responses. Springer, Heidelberg, pp. 69–80CrossRefGoogle Scholar
  26. Hassi J (2005) Cold extremes and impacts on health. In: W. Kirch, B. Menne, R. Bertollini (eds.), Extreme Weather Events and Public Health Responses. Springer, Heidelberg, pp. 59–67CrossRefGoogle Scholar
  27. Höppe P (1984) Die Energiebilanz des Menschen. Wiss. Mitt. Meteorol. Inst. Uni München 49Google Scholar
  28. Höppe P (1999) The physiological equivalent temperature — a universal index for the biometeoro-logical assessment of the thermal environment. Int. J. Biometeorol. 43: 71–75CrossRefGoogle Scholar
  29. Horikoshi T, Tsuchikawa T, Kurazumi Y and Matsubara N (1995) Mathematical expression of combined and seperate effect of air temperature, humidity, air velocity and thermal radiation on thermal comfort. Arch. Complex Environ. Stud. 7, 3–4: 9–12Google Scholar
  30. Horikoshi T, Einishi M, Tsuchikawa T and Imai H (1997) Geographical distribution and annual fluctuation of thermal environmental indices in Japan. Development of a new thermal environmental index for outdoors and its application. J. Human-Environ. Syst. 1, 1: 87–92Google Scholar
  31. Huizenga C, Zhang H and Arens E (2001) A model of human physiology and comfort for assesss-ing complex thermal environments. Build. Environ. 36: 691–699CrossRefGoogle Scholar
  32. Humphreys MA (1981) The dependence of comfortable temperatures upon indoor and outdoor climates. In: K. Cena and J.A. Clark (eds.), Bioengineering, Thermal Physiology and Comfort, Amsterdam, Elsevier, pp. 229–250CrossRefGoogle Scholar
  33. Jendritzky G, Sönning W and Swantes HJ (1979) Ein objektives Bewertungsverfahren zur Beschreibung des thermischen Milieus in der Stadt- und Landschaftsplanung (“Klima-Michel-Modell”). Beiträge d. Akad. f. Raumforschung und Landesplanung, 28, HannoverGoogle Scholar
  34. Jendritzky G (1990) Bioklimatische Bewertungsgrundlage der Räume am Beispiel von mesoska-ligen Bioklimakarten. In: Jendritzky G, Schirmer H, Menz G, Schmidt-Kessen W: Methode zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Akad Raumforschung Landesplanung, Hannover, Beiträge 114: 7–69Google Scholar
  35. Jendritzky G, Maarouf A, Fiala D and Staiger H (2002) An update on the development of a universal thermal climate index. Proceedings of the 15th Conference on Biometeorological Aerobiology and 16th ICB02, 27 Oct-1 Nov 2002, Kansas City, AMS, pp. 129–133Google Scholar
  36. Kalkstein LS, Barthel CD, Green JS and Nichols MC (1996) A New Spatial Synoptic classification: application to Air Mass Analysis. Int. J. Climatol. 16, 983–1004CrossRefGoogle Scholar
  37. Kirch W, Menne B, Bertollini R (2006) Extreme Weather Events and Public Health Responses. Springer, BerlinGoogle Scholar
  38. Konz S, Hwang C, Dhiman B, Duncan J and Masud A (1977) An experimental validation of mathematical simulation of human thermoregulation. Comput. Biol. Med. 7: 71–82CrossRefGoogle Scholar
  39. Koppe C, Kovats S, Jendritzky G and Menne B (2004) Heat-waves: risks and responses. World Health Organization. Health and Global Environmental Change, Series, No. 2, Copenhagen, DenmarkGoogle Scholar
  40. Koppe C and Jendritzky G (2005) Inclusion of short-term adaptation to thermal stresses in a heat load warning procedure. Meteorol. Z. 14, 2: 271–278CrossRefGoogle Scholar
  41. Kosatsky T (2005) The 2003 European heat waves. Euro Surveill 10, 7: www.eurosurveillance.org
  42. Kovats SR and Jendritzky G (2006) Heat-waves and human health. In: B. Menne and K.L. Ebi (eds.), Climate Change and Adaptation Strategies for Human Health. Steinkopff, Darmstadt, pp. 63–97Google Scholar
  43. Landsberg HE (1972) The assessment of human bioclimate, a limited review of physical parameters. World Meteorological Organization, Technical Note No. 123, WMO-No. 331, GenevaGoogle Scholar
  44. Levine M, Ürge-Vorsatz D, Blok K, Geng L, Harvey D, Lang S, Levermore G, Mongameli Mehlwana A, Mirasgedis S, Novikova A, Rilling J and Yoshino H (2007) Residential and commercial buildings. In: B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom/New YorkGoogle Scholar
  45. McConahey E, Haves P and Christ T (2002) The integration of engineering and architecture: A perspective on natural ventilation for the new San Francisco Federal Building. In proceedings of the ACEEE 2002 Summer Study on Energy Efficiency in Buildings ConferenceGoogle Scholar
  46. Moran DS, Shitzer A and Pandolf KB (1998) A physiological strain index to evaluate heat stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 275: R129–R134Google Scholar
  47. Moran DS, Castellani JW, O'Brien C, Young AJ and Pandolf KB (1999) Evaluating physiological strain during cold exposure using a new cold strain index. Am. J. Physiol. Regul. Integr. Comp. Physiol. 277: R556–R564Google Scholar
  48. Nicol JF and Humphreys MA (2002) Adaptive thermal comfort and sustainable thermal standards for buildings. Energ. Build. 34, 6: 563–572CrossRefGoogle Scholar
  49. Oke TR (1987) Boundary Layer Climates, Methuen, LondonGoogle Scholar
  50. Parsons KC (2003) Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance. Taylor & Francis, London/New YorkGoogle Scholar
  51. Richards M and Havenith G (2007) I.B. Mekjavic, S.N. Kounalakis, N.A.S. Taylor (eds.), Progress Towards the Final UTCI Model. Proceedings of the 12th International Conference on Environmental Ergonomics. August 19–24, Piran Slovenia. Ljubljana, Biomed., pp. 521–524Google Scholar
  52. Roaf S, Chrichton D and Nicol F (2005) Adapting Buildings and Cities for Climate Change, Achitectural Press, OxfordGoogle Scholar
  53. Pickup J and De Dear R (2000) An outdoor thermal comfort index (OUT_SET*)—Part I—the model and its assumptions. In: R. de Dear, J. Kalma, T. Oke, A. Auliciems (eds.), Biometeorology and Urban Climatology at the Turn of the Millenium. Selected Papers from the Conference ICB-ICUC'99 (Sydney, 8–12 Nov. 1999). WMO, Geneva, WCASP-50: 279–283Google Scholar
  54. Schär C and Jendritzky G (2004) Hot news from Summer 2003. News and views. Nature. 432, 2 Dec: 559–560CrossRefGoogle Scholar
  55. Shitzer A (2006) Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient. Int. J. Biomet. 50, 4: 224–232CrossRefGoogle Scholar
  56. Staiger H, Bucher K and Jendritzky G (1997) Gefühlte Temperatur. Die physiologisch gerechte Bewertung von Wärmebelastung und Kältestress beim Aufenthalt im Freien in der Mabzahl Grad Celsius. Annalen der Meteorologie, Deutscher Wetterdienst, Offenbach, 33: 100–107Google Scholar
  57. Steadman RG (1984) A Universal Scale of Apparent Temperature. J. Climate Appl. Meteor. 23: 1674–1687CrossRefGoogle Scholar
  58. Steadman RG (1994) Norms of apparent temperature in Australia. Aust. Met. Mag. 43: 1–16Google Scholar
  59. Stolwijk JAJ (1971) A mathematical model of physiological temperature regulation in man. NASA contractor report, NASA CR-1855, Washington, DCGoogle Scholar
  60. Tanabe SI, Kobayashi K, Nakano J, Ozeki Y and Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computa tional fluid dynamics (CFD). Energ. Build. 34: 637–646CrossRefGoogle Scholar
  61. The Eurowinter Group (1997) Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. Keatinge, W.R., Donaldson, G.C. (Coord.). Lancet 349: 1341–1346CrossRefGoogle Scholar
  62. Tikuisis P and Osczevski RJ (2002) Dynamic model of facial cooling. J. Appl. Meteor. 41: 1241–1246CrossRefGoogle Scholar
  63. Tikuisis P and Osczevski RJ (2003) Facial cooling during cold air exposure. BAMS July, 927–934Google Scholar
  64. Ward J and White S (2007) Smart Thermostats Trial. CSIRO Report ET/IR 970/R for Sustainability VictoriaGoogle Scholar
  65. WMO (2004) Proceedings of the Meeting of Experts to Develop Guidelines on Heat/Health Warning Systems. WCASP- No. 63, WMO-TD No. 1212Google Scholar
  66. WMO/WHO (2007) Guide for Heat Health Warning Systems HHWSs. In preparationGoogle Scholar
  67. Wissler EH (1985) Mathematical simulation of human thermal behavior using whole body models. In: A. Shitzer, R.C. Eberhart (eds.), Heat Transfer in Medicine and Biology — Analysis and Applications, Plenum, New York/London, pp. 325–373Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Gerd Jendritzky
    • 1
  • Richard de Dear
    • 2
  1. 1.Meteorological InstituteUniversity of FreiburgGermany
  2. 2.Division of Environmental & Life SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations