Advertisement

Tensegrity Concept – From Natural Systems to Robots

  • Simona-Mariana Cretu

Abstract

This paper presents: the tensegrity concept applied to inorganic matter (the construction of the “buckyball” model for water; the tensegrity icosahedron for the hexagonal model of water); a review of the natural tensegrity forms found in living life, from micro to macro level and the different tensegrities which approximate them, including some realisations of the members of the scientific association “Methodology of technical sciences teaching”, from the Faculty of Mechanics, University of Craiova; new trends towards optimally designing mechanisms and mobile robots.

Keywords

Natural systems Robots Tensegrity Structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldrich J. B., Skelton R. E., Control/structure optimization approach for minimum-time reconfiguration of tensegrity systems, In: Proceedings of SPIE, Vol. 5049, 2003, pp. 448–459.Google Scholar
  2. 2.
    Arsenault, M., Gosselin, C.M., Kinematic, static and dynamic analysis of a planar 2-DOF tensegrity mechanism, In: Mechanism and Machine Theory, Vol. 41, 2006, pp. 1072–1089.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baudriller H., Maurin B., Canadas P., Montcourrier P., Parmeggiani A., Bettache, N., Form-finding of complex tensegrity structures: application to cell cytoskeleton modelling, In: C. R. Mecanique, Vol. 334, 2006, pp. 662–668.Google Scholar
  4. 4.
    Brinzan G.C., Structura apei si tensegritatea, Concursul national CHIMEXPERT, Satu Mare, 2008.Google Scholar
  5. 5.
    Burkhardt RW Jr., A practical guide to tensegrity design, http://bobwb.Tripod
  6. 6.
    Canadas P., Laurent V. M., Oddou C., Isabey D., Wendling S., A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton, In: Journal of Theoretical Biology, Vol. 218, 2002, pp. 155–173.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Coughlin M. F., Stamenovich D., A tensegrity structure with compression elements: application to cell mechanics, ASME Journal of Applied Mechanics, Vol. 64, 1997, pp. 480–486.zbMATHCrossRefGoogle Scholar
  8. 8.
    Cretu S.-M., Tensegrity as a structural framework in life sciences and bioengineering, In: Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems, Springer Verlag, Berlin, 2008.Google Scholar
  9. 9.
    Cretu S.-M., Brinzan G. C., Conceptul tensegrity – de la sistemele naturale la roboti, The third national seminar on mechanisms, Craiova, Romania, 2008, pp. 211–227.Google Scholar
  10. 10.
    Danowski B. A., Fibroblast contractility and actin organization are stimulated by microtubule inhibitors, Journal of Cell Science, Vol. 93, 1989, pp. 255–266.Google Scholar
  11. 11.
    De Jager B., Masic M., Skelton R. E., Optimal topology and geometry for controllable tensegrity systems, http://maeweb.ucsd.edu/∼skelton/publications/ masic_ifac.pdf, 2004.
  12. 12.
  13. 13.
    Fuller R. B., Synergetics: Explorations in the geometry of thinking, New York, 1975.Google Scholar
  14. 14.
    Ingber D. E., The architecture of the life, Scientific American, Vol. 278, 1997, pp. 48–57.Google Scholar
  15. 15.
    Kroto H., Space, stars, C60, and soot, Science, Vol. 242, 1988, pp. 1139–1145.Google Scholar
  16. 16.
    Levin S. M., http://www. biotensegrity.com/, 1995, 1997, 2002, 2007.
  17. 17.
    Masic M., Skelton R. E., Gill, P. E., Optimization of tensegrity structures, International Journal of Solids Structures, Vol. 43, 2006, pp. 4687–4703.zbMATHCrossRefGoogle Scholar
  18. 18.
    Muddana H. S., Integrated biomechanical model of cells embedded in extracellular matrix. Thesis for Master of Science, Texas A8M University, http://research.cs.tamu.edu/bnl/papers/ muddana.thesis06.pdf, 2006.
  19. 19.
    Ohsaki M., Zhang J. Y., Kimura S., An optimization approach to design of geometry and forces of tensegrities, IAAS 2005, 2005, pp. 603–610.Google Scholar
  20. 20.
    Paul C., Roberts J., Lipson H., Valero-Cuevas F. J., Gait production in a tensegrity based robot, In: The 2005 International Conference on Advanced Robotics, http://ccsl.mae.cornell.edu/ papers/ICAR05_Paul.pdf, 2005.
  21. 21.
    Paul C., Valero-Cuevas F. J, Lipson H., Design and control of tensegrity robots for locomotion, In: IEEE Transactions on Robotics, Vol. 22, No. 5, 2006, pp. 944–957.CrossRefGoogle Scholar
  22. 22.
    Plato, Timaeus, 350 BC.Google Scholar
  23. 23.
    Pugh A., An introduction to tensegrity, Berkeley, California, University of California Press, 1976.Google Scholar
  24. 24.
    Rieffel J., Stuk R. J., Valero-Cuevas F. J., Lipson H., Locomotion of a tensegrity robot via dinamically coupled modules, In: Proceedings of the International Conference on Morphological Computation, Venice Italy,http://ccsl.mae.cornell.edu/papers/MC07_Rieffel.pdf, 2007.
  25. 25.
    Schenk M., Herder J.L., Guest S.D., Design of a statically balanced tensegrity mechanism, In: Proceedings of IDETC/CIE 2006 ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, USA, September 10–13, 2006.Google Scholar
  26. 26.
  27. 27.
    Stamenovic D., Fredberg J. J., Wang N., Butler J. P., Ingber D. E., A microstructural approach to cytoskeletal mechanics based on tensegrity, In: Journal Theoretical Biology, Vol. 181, 1996, pp. 125–136.CrossRefGoogle Scholar
  28. 28.
    Vera C., Skelton R., Bossens F., Sung L. A., 3-D nano-mechanics of an erythrocyte junctional complex in equibiaxial and anisotropic deformations, In: Annals of Biomedical Engineering, Vol. 33, No. 10, 2005, pp. 1387–1404.CrossRefGoogle Scholar
  29. 29.
    Volokh K. Yu., Vilnay O., Belsky M., Tensegrity architecture explains linear stiffening and pedicts softening of living cells, Journal of Biomechanics, Vol. 33, 2000, pp. 1543–1549.Google Scholar
  30. 30.
    Wendling S., Oddou C., Isabey D., Stiffening response of a cellular tensegrity model, In: Journal Theoretical Biology, Vol. 196, 1999, pp. 309–325.CrossRefGoogle Scholar
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.
  36. 36.

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Simona-Mariana Cretu
    • 1
  1. 1.Department of Applied Mechanics Faculty of MechanicsUniversity of CraiovaRomania

Personalised recommendations