Advertisement

Insect Pests as Climate Change Driven Disturbances in Forest Ecosystems

  • T. HlásnyEmail author
  • M. Turčáni

Abstract

Climate change is generally agreed to have a profound impact on forest structure and its dynamics (Aber et al. 2001; Ayres and Lombardero 2000; Dale et al. 2000, 2001). As trees can live from decades to centuries, rapid changes of climate are also expressed through alterations of the disturbance regime (Franklin et al. 2002; He et al. 1999).

Keywords

Lymantria dispar (L.) Ips typographus (L.) Climate change Spatial modelling Outbreaks Voltinism Slovakia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber J, Neilson RP, McNulty S, Lenihan JM, Bachelet D, Drapek RJ (2001) Forest processes and global environmental change: Predicting the effects of individual and multiple stressors. BioScience, 51: 735–751CrossRefGoogle Scholar
  2. Anderbrant O (1986) A model for the temperature and density dependent reemergence of the bark beetle Ips typographus. Entomologia Experimentalis et Applicata, 40: 81–88CrossRefGoogle Scholar
  3. Anderbrant O (1990) Gallery construction and oviposition of the bark beetle Ips typographus (Coleoptera: Scolytidae) at different breeding densities. Ecological Entomology, 15: 1–8CrossRefGoogle Scholar
  4. Andersson M, Erlinge S (1977) Influence of predation on rodent populations. Oikos, 29: 591–597CrossRefGoogle Scholar
  5. Annila E (1969) Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolitidae). Annales Zoologici Fennici, 6: 161–208Google Scholar
  6. Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Science of the Total Environment 262: 263–286CrossRefGoogle Scholar
  7. Baier P (1996a) Auswirkungen von Vitalität und Brutbaum–Qualität der Europaischen Fichte, Picea abies, auf die Entwicklung der Borkenkäfer–Art Ips typographus (Coleoptera: Scolytidae). Entomology General, 21: 27–35Google Scholar
  8. Baier P (1996b) Defence reactions of Norway spruce (Picea abies Karst) to controlled attacks of Ips typographus (L.) (Col Scolytidae) in relation to tree parameters. Journal of Applied Entomology, 120: 587–593CrossRefGoogle Scholar
  9. Baier P, Pennerstorfer J, Schopf A (2007) PHENIPS – A comprehensive phenology model of Ips typographus (L.) (Col. Scolytinae) as a tools for hazard rating of bark beetle infestation, Forest Ecology and Management, 249: 171–186CrossRefGoogle Scholar
  10. Baltensweiler W, Fischlin A (1988) The larch budmoth in the Alps. In: Berryman A (ed.) Dynamics of Forest Insect Populations: Patterns, Causes, Implications, Plenum, New York, pp. 331–351Google Scholar
  11. Battles JJ, Robards T, Das A, Waring K, Gilless JK, Schurr F, LeBlanc J, Biging G, Simon C (2006) Climate change impact on forest resources, California Climate Change CenterGoogle Scholar
  12. Berryman AA (1996) What causes population cycles of forest Lepidoptera? Trends in Ecology and Evolution, 11: 28–32CrossRefGoogle Scholar
  13. Brasier CM (1996) Phytophthora cinnamomi and oak decline in southern Europe: Environmental constraints including climate change. Annales des Sciences Forestières, 53: 347–358CrossRefGoogle Scholar
  14. Byers JA (1993) Simulation and equation models of insect population control by pheromone-baited traps. Journal of Chemical Ecology, 19: 1939–1956CrossRefGoogle Scholar
  15. Byers JA (1996) An encounter rate model of bark beetle populations searching at random for susceptible host trees. Ecological Modelling 91: 57–66CrossRefGoogle Scholar
  16. Byers JA (1999) Effects of attraction radius and flight paths on catch of scolytid beetles dispersing outward through rings of pheromone traps. Journal of Chemical Ecology, 25: 985–1005CrossRefGoogle Scholar
  17. Byers JA (2000) Wind-aided dispersal of simulated bark beetles flying through forests. Ecological Modelling, 125: 231–243CrossRefGoogle Scholar
  18. Csóka G, Hirka A (2006) 2004- year of the gypsy moth in Hungary. In: Csóka G, Hirka A, Koltay A (eds.). Biotic damage in forests. Proceedings of the IUFRO WP. 7.03.10.) Symposium held in Mátrafüred, Hungary, 12–16 September 2004. pp. 271–275.Google Scholar
  19. Christiansen E, Bakke A (1988) The spruce bark beetle of Eurasia. In: Berryman AA (ed.), Dynamics of Forest Insect Populations; Patterns, Causes, Implications, Plenum Press, New York, pp 479–503Google Scholar
  20. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton B (2001) Climate change and forest disturbance. BioScience 51(9): 723–734CrossRefGoogle Scholar
  21. Dale VH, Joyce LA, McNulty S, Neilson RP (2000) The interplay between climate change, forests, and disturbance. Science of the Total Environment 262(3): 201–204CrossRefGoogle Scholar
  22. Doane CC, McManus ME (eds) (1981) The gypsy moth: research toward integrated pest management. USDA Tech Bull 1584, WashingtonGoogle Scholar
  23. Docherty M, Salt DT, Holopainen JK. (1997) The impacts of climate change and pollution on forest pests. In: Watt AD, Stork NE, Hunter MD (eds.), Forests and Insects, London: Chapman & Hall, pp. 229–247Google Scholar
  24. Esper J, Buntgen U, Frank DC, Nievergelt D, Liebhold A (2007) 1200 years of regular outbreaks in alpine insects. Proceedings of the Royal Society, B 274: 671–679Google Scholar
  25. Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Science of the Total Environment 262: 221–229CrossRefGoogle Scholar
  26. Franklin JF, Spies TA, Van Pelt R. et al. (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155: 399–423CrossRefGoogle Scholar
  27. Forsse E (1991) Flight propensity and diapause incidence in five populations of the bark beetle Ips typographus in Scandinavia. Entomologia Experimentalis et Applicata, 61: 53–58CrossRefGoogle Scholar
  28. Furuta K, Iguchi K, Lawson S. (1996) Seasonal difference in the abundance of the spruce beetle (Ips typographus japonicus Niijima) (Col., Scolytidae) within and outside forest in a bivoltine area. Journal of Applied Entomology 120: 125–129CrossRefGoogle Scholar
  29. Gordon TR, Storer AJ, Wood DL (2001) The pitch canker epidemic in California. Plant Dis. 85(11): 1128–1139CrossRefGoogle Scholar
  30. Hansen EM. Bentz BJ, (2003) Comparison of reproductive capacity among univoltine, semivoltine, and re-emerged parent spruce beetles (Coeloptera: Scolytidae). The Canadian Entomologist, 135: 697–712CrossRefGoogle Scholar
  31. Hanson PJ, Weltzin JF. 2000. Drought disturbance from climate change response of United States forests. Science of the Total Environment 262: 205–220CrossRefGoogle Scholar
  32. Harding S, Ravn H, (1985) Seasonal activity of Ips typographus in Denmark. Z. Angew. Ent. 99: 123–131Google Scholar
  33. Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agricultural and Forest Entomology, 3(4): 233–240CrossRefGoogle Scholar
  34. He HS, Mladenoff DJ, Crow TR (1999) Linking an ecosystem model and a landscape model to study forest species response to climate warming. Ecological Modelling, 114: 213–233CrossRefGoogle Scholar
  35. Hedgren PO, Schroeder LM (2004) Reproductive success of the spruce bark beetle Ips typographus (L.) and occurrence of associated species: a comparison between standing beetle-killed trees and cut trees. Forest Ecology and Management, 203(1–3): 241–250CrossRefGoogle Scholar
  36. Hirka A (2006) (ed.) A 2005. évi biotikus és abiotikus erdogazdasági károk, valamint a 2006-ban várható károsítások [Biotic and abiotic forest damages in 2005 and forecasts for 2006.], Növényvédelem 42, 5 (in Hungarian)Google Scholar
  37. Johnson DM, Liebhold AM, Bjørnstad ON (2006) Geographical variation in the periodicity of gypsy moth outbreaks. Ecography 148: 51–60.Google Scholar
  38. Johnson DM, Liebhold AM, Bjornstad ON, McManus ML (2006) Circumpolar variation in periodicity and synchrony among gypsy moth populations. Journal of Animal Ecology, 74: 882–892CrossRefGoogle Scholar
  39. Kendall BE, Prendergast J, Bjørnstad ON (1998) The macroecology of population dynamics: taxonomic and biogeographic patterns in population cycles. Ecology Letters 1: 160–164CrossRefGoogle Scholar
  40. Knapp R, Casey MT (1986) Thermal ecology, behavior, and growth of Gypsy moth and eastern tent caterpillars. Ecology, 67(3): 598–608CrossRefGoogle Scholar
  41. Kunca A, Brutovský D, Finďo S, Gubka A, Konôpka B, Konôpka J, Leontovyč, R, Longauerová V, Minďáš J, Novotný J, Pajtík J, Vakula J, Varínsky J, Zúbrik M, 2007. Occurrence of injurious factors in Slovakia in 2005 and their prediction for 2006. Forest Research Institute Zvolen. 89ppGoogle Scholar
  42. Lange H, Økland B, Krokene P (2006) Thresholds in the life cycle of the spruce bark beetle under climate change. Interjournal for Complex Systems 1648Google Scholar
  43. Lapin M, Damborská I, Melo M. (2001) Downscaling of GCM outputs for precipitation time series in Slovakia. Meteorologický časopis, 4(3): 29–40Google Scholar
  44. Lapin M, Melo M, Damborská M, Vojtek M, Martini M (2006) Physically and statistically plausible downscaling of daily GCMs outputs and selected results. Acta Meteorologica Universitatis Comenianae, 34: 35–57Google Scholar
  45. Liebhold A, Kamata N, (2000) Introduction: Are population cycles and spatial synchrony a universal characteristic of forest insect populations? Population Ecology, 42: 205–209CrossRefGoogle Scholar
  46. Liebhold AM, Turčáni M, Kamata N (2008) Inference of adult female dispersal from the distribution of Gypsy moth egg masses in a Japanese City. Agricultural and Forestry Entomology, Journal Summary 2007, 1–5Google Scholar
  47. Lieutier F, Brignolas F, Sauvard D, Galet C, Yart A, Brunet M, Christiansen E, Solheim H, Berryman AA (1997) Phenolic compounds as predictors of Norway spruce resistance to bark beetles. USDA, Forest Service. General Technical Report NE 236: 215–216Google Scholar
  48. Lieutier F, Day KR, Battisti A, Grégoire JC, Evans HF (eds.) (2004) Bark and Wood Boring Insects in Living Trees in Europe, A Synthesis 2004, XIV, Hardcover, Kluwer Academic Publishers Dordrecht/ Boston/ London.Google Scholar
  49. Logan JA, Regniere J, Powell JA (2003) Assessing the impact of global warming on forest pest dynamics. Frontiers in Ecology, 1(3): 130–137CrossRefGoogle Scholar
  50. Logan JA, Regniere J, Gray DR, Munson AS (2007) Risk assessment in the face of a changing environment: Gypsy moth and climate change in Utah. Ecological Applications 17(1): 101–117CrossRefGoogle Scholar
  51. Lonsdale D, Gibbs JN (1996) Effects of climate change on fungal diseases. In: Frankland JC, Magan M, Gadd GM (eds.) Fungi and Environmental Change: Symposium of the British Mycological Society, Cranfield, England, pp. 1–19Google Scholar
  52. Malcolm JR, Markham A, Neilson RP (2001) Can species keep up with climate change? Conservation Biology In Practice, 2(2): 24–25Google Scholar
  53. Martinat PJ (1987) The role of climatic variation and weather in forest insect outbreaks. In: Barbosa P and Schultz J (eds.), Insect Outbreaks, Academic Press, New York, pp. 241–268Google Scholar
  54. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design, Gleneden Beach, Oregon, USA.Google Scholar
  55. Moravčík M et al. (2006) Report on Forestry in the Slovak Republic 2006 (Green Report). Bratislava, MP SR a NLC-LVÚ ZvolenGoogle Scholar
  56. Myers JH (1993) Population outbreaks in forest Lepidoptera. American Scientist, 81: 240–251Google Scholar
  57. Myers JH (1998) Synchrony in outbreaks of forest Lepidoptera: a possible example of the Moran effect. Ecology, 79: 1111–1117CrossRefGoogle Scholar
  58. Netherer S, Pennerstorfer J, Baier P, Schopf A, Führer E (2004) Modellierung der Entwicklung des Fichtenborkenkäfers, Ips typographus L., als Grundlage einer umfassenden Risikoanalyse. Mitt. Deut. Gesell. Allg. Ang. Ent. 14: 277–282Google Scholar
  59. Netherer S, Pennerstorfer J (2001) Parameters relevant for Modelling the Potential Development of Ips typographus L. (Coleoptera, Scolitidae). Integrated Pests Management Reviews 6(3–4): 177–184CrossRefGoogle Scholar
  60. Netherer S (2003) Modelling of bark beetle development and of-site and stand-related predispositions toIps typographus (L.) (Coleoptera; Scolytidae). A contribution to risk assessment. Ph.D. thesis, Forstpathologie und Forstchutz der Universität fur Bodenkultur WienGoogle Scholar
  61. Patočka J, Čapek M, Charvát K (1962) The communities of Invertebrata on oaks in Slovakia. Biologické práce SAV, p. 98Google Scholar
  62. Patočka J, Krištín A, Kulfan J, Zach P (eds.) (1999) Die Eichenschadling und ihre Feinde./ Institut fur Waldokologie der Slowakischen Akademie der WissenschaftenGoogle Scholar
  63. Raffa KF (1988) The Mountain Pine Beetle in Western North America, In: Berryman AA (ed.) Dynamics of Forest Insect Populations, Plenum Press, New YorkGoogle Scholar
  64. Reynolds KM, Holsten EH (1994) Relative importance of risk factors for spruce beetle outbreaks, Canadian Journal of Forest Research, 24: 2089–95CrossRefGoogle Scholar
  65. Rohde M, Waldmann R, Lunderstädt J (1996) Induced defence reaction in the phloem of spruce (Picea abies) and larch (Larix decidua) after attack by Ips typographus and Ips cembrae. Forest Ecology and Management, 86: 51–59CrossRefGoogle Scholar
  66. Rossiter MC (1994) Maternal effects hypothesis of herbivore outbreak. Bioscience, 44: 752–763CrossRefGoogle Scholar
  67. Schopf R, Köhler U (1995) Untersuchungen zur Populationsdynamik der Fichtenborkenkafer im Nationalpark Bayerischer Wald. Nationalpark Bayerischer Wald – 25 Jahre auf dem Weg zum Naturwald. Nationalparkverwaltung Bayerischer Wald, Neuschönau, 88–110Google Scholar
  68. ter Braak CJF, Šmilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power (Ithaca NY, USA), 500ppGoogle Scholar
  69. Turchin P, Berryman AA (2000) Detecting cycles and delayed density dependence: a comment on Hunter & Price (1998). Ecological Entomology, 25: 119–121CrossRefGoogle Scholar
  70. Turčáni M, Novotný J (1998) The importance of eight-toothed spruce bark beetle (Ips typographusL.) in Central Europe. In: McManus M. (ed.), Proceedings of U.S. Department of Agriculture Interagency Gypsy Moth Research Forum 1998. pp. 62–63Google Scholar
  71. Vité JP (1952) Die holzzerstörenden Insekten Mitteleuropas. Göttingen: Musterschmidt, Wissenschafticher Verlag. pp. 68–84Google Scholar
  72. Villemant C, Fraval A (1998) Lymantria dispar en Europe et en Afrique du Nord, INRAGoogle Scholar
  73. Vité JP (1952) Die holzzerstörenden Insekten Mitteleuropas. Göttingen: Musterschmidt, Wissenschafticher Verlag, pp. 68–84Google Scholar
  74. Wackernagel H (1998) Multivariate geostatistics: an introduction with applications, 2nd Edition, Springer Verlag, New YorkGoogle Scholar
  75. Williams Dw, Liebhold Am (2002) Climate Change And The Outbreak ranges of two North American bark beetles. Agricultural and Forest Entomology, 4: 87–99CrossRefGoogle Scholar
  76. Wermelinger B, Seifert M (1998) Analysis of the temperature dependent development of spruce bark beetle Ips typographus L. (Coleoptera, Scolitidae). Journal of Applied Entomology, 122: 185–191CrossRefGoogle Scholar
  77. Woods A, Coates DK, Hamman A (2005) Is an unprecedented dothistroma needle blight epidemic related to climate change? Bioscience, 55(9): 761–769CrossRefGoogle Scholar
  78. Zumr V (1982) The data for the prognosis of spring swarming of main species of bark beetles (Coleoptera, Scolytidae) on the spruce (Picea excelsa L.). Z. Ang. Entomol. 93: 305–320Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Forest Research Institute National Forest CentreSlovakia
  2. 2.Department of Forest Protection and Game ManagementCzech University of Life SciencesPrague 6 – SuchdolCzech Republic
  3. 3.Department of Forest Protection and Game ManagementCzech University of Life SciencesPrague 6 – SuchdolCzech Republic

Personalised recommendations