Dinitroaniline Interactions with Tubulin: Genetic and Computational Approaches to Define the Mechanisms of Action and Resistance

  • Naomi Morrissette
  • David Sept
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

The dinitroanilines are small molecules that selectively bind to plant and protozoan tubulin dimers and disrupt microtubules in these organisms. Despite the high degree of sequence conservation among all tubulins, these compounds do not bind to tubulins from fungi or vertebrates, nor are microtubules in these organisms disrupted by dinitroaniline treatment. Studies on tubulin affinity for dinitroanilines, dinitroaniline effects on microtubule dynamics and the genetics of dinitroaniline resistance in the unicellular alga Chlamydomonas reinhardtii and in the higher plants Eleusine indica and Setaria viridis are summarized here. We also describe our ongoing research which exploits computational methods and the genetics of resistance in the protozoan parasite Toxoplasma gondii to describe the action of the dinitroanilines on tubulin. We conclude that the dinitroanilines bind beneath the H1-S2 (N) loop of α-tubulin and cause this loop to be drawn inwards, disrupting protofilament interactions within the microtubule. Toxoplasma mutations that confer resistance to these compounds appear to act by increasing microtubule stability or by decreasing affinity for dinitro-anilines. Moreover, resistance mutations impose a fitness cost on Toxoplasma, and growth of resistant parasites in the absence of dinitroanilines leads to the spontaneous appearance of suppressor mutations. Many of these secondary mutations are point mutations located in the α- or β-tubulin genes. The suppressor mutations act to improve the growth of Toxoplasma and to decrease resistance to dinitroanilines, indicating that there is a trade-off between dinitroaniline resistance and tubulin function.


Docking fitness herbicide microtubule molecular dynamics mutant parasite protozoa resistance Toxoplasma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. F. Alder, W. L. Wright, and G. F. Soper, Control of seedling grasses in turf with diphenylacetonitrile and a substituted dinitroaniline. Proc. North Central Weed Control Conf17, 23–4 (1960).Google Scholar
  2. 2.
    D. Hess and D. Bayer, The effect of trifluralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hirsutum L. “Acala 4–42”, J Cell Sci 15, 429–41 (1974).PubMedGoogle Scholar
  3. 3.
    J. D. Bond and L. McMillan, Meiotic aneuploidy: its origins and induction following chemical treatment in Sordaria brevicollis, Environ Health Perspect 31, 67–74 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    D. P. Schultz, H. H. Funderburk, and N. S. Negi, Effect of trifluralin on growth, morphology, and nucleic acid synthesis, Plant Physiol 43, 265–273 (1968).PubMedCrossRefGoogle Scholar
  5. 5.
    A. F. Afifi and A. E. Dowidar, Trifluralin effect on Pisum — Rhizobium relationship, Zentralbl Bakteriol Naturwiss 133, 394–9 (1978).PubMedGoogle Scholar
  6. 6.
    D. A. Collings, A. W. Lill, R. Himmelspach, and G. O. Wasteneys, Hypersensitivity to cytoskeletal antagonists demonstrates microtubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana, New Phytol 170, 275–90 (2006).PubMedCrossRefGoogle Scholar
  7. 7.
    T. I. Baskin, G. T. Beemster, J. E. Judy-March, and F. Marga, Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Arabidopsis, Plant Physiol 135, 2279– 90 (2004).PubMedCrossRefGoogle Scholar
  8. 8.
    T. I. Baskin, J. E. Wilson, A. Cork, and R. E. Williamson, Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol, Plant Cell Physiol 35, 935–42 (1994).PubMedGoogle Scholar
  9. 9.
    F. De Rosa, D. Haber, C. Williams, and L. Margulis, Inhibitory effects of the herbicide trifluralin on the establishment of the clover root nodule symbiosis, Cytobios 21, 37–43 (1978).PubMedGoogle Scholar
  10. 10.
    P. G. Bartels and J. L. Hilton, Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules, Pest Biochem Physiol 3, 462–472 (1973).CrossRefGoogle Scholar
  11. 11.
    M. M. Chan and D. Fong, Inhibition of leishmanias but not host macrophages by the antitubulin herbicide trifluralin, Science 249, 924–6 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    J. D. Hugdahl and L. C. Morejohn, Rapid and Reversible High-Affinity Binding of the Dinitroaniline Herbicide Oryzalin to Tubulin from Zea mays L., Plant Physiol 102, 725– 740 (1993).PubMedGoogle Scholar
  13. 13.
    L. C. Morejohn, T. E. Bureau, J. Mole-Bajer, A. S. Bajer, and D. E. Fosket, Oryzalin, a dinitroaniline herbicide, binds to plant tubulin and inhibits microtubule polymerization in vitro, Planta 172, 252–264 (1987).CrossRefGoogle Scholar
  14. 14.
    J. V. Murthy, H. H. Kim, V. R. Hanesworth, J. D. Hugdahl, and L. C. Morejohn, Competitive inhibition of high-affinity oryzalin binding to plant tubulin by the phosphoric amide herbicide amiprophos-methyl, Plant Physiol 105, 309–20 (1994).PubMedGoogle Scholar
  15. 15.
    F. D. Hess and D. E. Bayer, Binding of the herbicide trifluralin to Chlamydomonas flagellar tubulin, J Cell Sci 24, 351–60 (1977).PubMedGoogle Scholar
  16. 16.
    A. S. Bajer and J. Mole-Bajer, Drugs with colchicine-like effects that specifically disassemble plant but not animal microtubules, Ann NY Acad Sci 466, 767–84 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    D. E. Bayer, C. L. Foy, T. E. Mallory, and E. G. Cutter, Morphological and histological effects of trifluralin on root development, Am J Bot 54, 945–52 (1967).CrossRefGoogle Scholar
  18. 18.
    H. Quader and P. Filner, The action of antimitotic herbicides on flagellar regeneration in Chlamydomonas reinhardtii: a comparison with the action of colchicine, Eur J Cell Biol 21, 301–4 (1980).PubMedGoogle Scholar
  19. 19.
    N. S. Morrissette and L. D. Sibley, Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii, J Cell Sci 115, 1017–25 (2002).PubMedGoogle Scholar
  20. 20.
    T. J. Stokkermans, J. D. Schwartzman, K. Keenan, N. S. Morrissette, L. G. Tilney and D. S. Roos, Inhibition of Toxoplasma gondii replication by dinitroaniline herbicides, Exp Parasitol 84, 355–70 (1996).PubMedCrossRefGoogle Scholar
  21. 21.
    M. K. Shaw, H. L. Compton, D. S. Roos, D.S. and Tilney, L.G. Microtubules, but not actin filaments, drive daughter cell budding and cell division in Toxoplasma gondii. J Cell Sci 113, 1241–54 (2000).PubMedGoogle Scholar
  22. 22.
    H. L. Callahan, C. Kelley, T. Pereira, and M. Grogl, Microtubule inhibitors: structure-activity analyses suggest rational models to identify potentially active compounds, Antimicrob Agents Chemother 40, 947–52 (1996).PubMedGoogle Scholar
  23. 23.
    Y. M. Traub-Cseko, J. M. Ramalho-Ortigão, A. P. Dantas, S. L. de Castro, H. S. barbosa and K. H. Downing, Dinitroaniline herbicides against protozoan parasites: the case of Trypanosoma cruzi, Trends Parasitol 17, 136–41 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    K. A. Werbovetz, D. L. Sackett, D. Delfin, G. Bhattacharya, M. Salen, T. Obrzut, D. Rattendi and C. Bacchi, Selective antimicrotubule activity of N1-phenyl-3,5-dinitro-N4,N4-di-n-propylsulfanilamide (GB-II-5) against kinetoplastid parasites. Mol Pharmacol 64, 1325–33 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    G. Bhattacharya, et al. Synthesis and antitubulin activity of N1- and N4-substituted 3,5-dinitro sulfanilamides against African trypanosomes and Leishmania. J Med Chem 47, 1823–32 (2004).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Armson, S. W. Kamau, F. Grimm, J. A. Reynoldson, W. M. Best, L. M. MacDonald and R. C. A. Thompson, A comparison of the effects of a benzimidazole and the dinitroanilines against Leishmania infantum. Acta Trop73, 303–11 (1999).PubMedCrossRefGoogle Scholar
  27. 27.
    J. W. Benbow, E. L. Bernberg, A. Korda, and J. R. Mead, Synthesis and evaluation of dinitroanilines for treatment of cryptosporidiosis, Antimicrob Agents Chemother 42, 339–43 (1998).PubMedGoogle Scholar
  28. 28.
    G. Bhattacharya, M. M. Salem, and K. A. Werbovetz, Antileishmanial dinitroaniline sulfonamides with activity against parasite tubulin, Bioorg Med Chem Lett 12, 2395–8 (2002).PubMedCrossRefGoogle Scholar
  29. 29.
    M. M. Chan, R. E. Triemer, and D. Fong, Effect of the anti-microtubule drug oryzalin on growth and differentiation of the parasitic protozoan Leishmania mexicana, Differentiation 46, 15–21 (1991).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Makioka, M. Kumagai, H. Ohtomo, S. Kobayashi, and T. Takeuchi, Effect of dinitroaniline herbicides on the growth of Entamoeba histolytica, J Parasitol 86, 607–10 (2000).PubMedGoogle Scholar
  31. 31.
    K. A. Werbovetz, J. J. Brendle, and D. L. Sackett, Purification, characterization, and drug susceptibility of tubulin from Leishmania, Mol Biochem Parasitol 98, 53–65 (1999).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Kaidoh, J. Nath, H. Fujioka, V. Okoye, and M. Aikawa, Effect and localization of trifluralin in Plasmodium falciparum gametocytes: an electron microscopic study, J Eukaryot Microbiol 42, 61–4 (1995).PubMedCrossRefGoogle Scholar
  33. 33.
    R. E. Fowler, R. E. Fookes, F. Lavin, L. H. Bannister, and G. H. Mitchell, Microtubules in Plasmodium falciparum merozoites and their importance for invasion of erythrocytes, Parasitology 117, 425–33 (1998).PubMedCrossRefGoogle Scholar
  34. 34.
    J. Gaertig, T. H. Thatcher, L. Gu, and M.A. Gorovsky, Electroporation-mediated replacement of a positively and negatively selectable beta-tubulin gene in Tetrahymena thermophila, Proc Natl Acad Sci USA 91, 4549–53 (1994).PubMedCrossRefGoogle Scholar
  35. 35.
    L. Gu, J. Gaertig, L. A. Stargell, and Ma. A. Gorovsky, Gene-specific signal transduction between microtubules and tubulin genes in Tetrahymena thermophila, Mol Cell Biol 15, 5173–9 (1995).PubMedGoogle Scholar
  36. 36.
    S. K. Dutcher, The tubulin fraternity: alpha to eta, Curr Opin Cell Biol 13, 49–54 (2001).PubMedCrossRefGoogle Scholar
  37. 37.
    E. Nogales, S. G. Wolf, I. A. Khan, R. F. Luduena, and K. H. Downing, Structure of tubulin at 6.5 A and location of the taxol-binding site, Nature 375, 424–7 (1995).PubMedCrossRefGoogle Scholar
  38. 38.
    K. H. Downing and E. Nogales, Tubulin structure: insights into microtubule properties and functions, Curr Opin Struct Biol 8, 785–91 (1998).PubMedCrossRefGoogle Scholar
  39. 39.
    K. H. Downing, and E. Nogales, Tubulin and microtubule structure, Curr Opin Cell Biol 10, 16–22 (1998).PubMedCrossRefGoogle Scholar
  40. 40.
    E. Nogales, Structural insights into microtubule function, Annu Rev Biochem 69, 277– 302 (2000).PubMedCrossRefGoogle Scholar
  41. 41.
    J. Lowe, H. Li, K. H. Downing, and E. and Nogales, Refined structure of alpha beta-tubulin at 3.5 A resolution, J Mol Biol 313, 1045–57 (2001).PubMedCrossRefGoogle Scholar
  42. 42.
    J. P. Snyder, J. H. Nettles, B. Cornett, K. H. Downing, and E. Nogales, The binding conformation of Taxol in beta-tubulin: a model based on electron crystallographic density, Proc Natl Acad Sci USA 98, 5312–6 (2001).PubMedCrossRefGoogle Scholar
  43. 43.
    K. R. Anders, and D. Botstein, Dominant-lethal alpha-tubulin mutants defective in microtubule depolymerization in yeast, Mol Biol Cell 12, 3973–86 (2001).PubMedGoogle Scholar
  44. 44.
    C. A. Dougherty, C. R. Sage, A. Davis, and K. W. Farrell, Mutation in the beta-tubulin signature motif suppresses microtubule GTPase activity and dynamics, and slows mitosis, Biochemistry 40, 15725–32 (2001).PubMedCrossRefGoogle Scholar
  45. 45.
    C. R. Sage, et al. Site-directed mutagenesis of putative GTP-binding sites of yeast beta-tubulin: evidence that alpha-, beta-, and gamma-tubulins are atypical GTPases. Biochemistry 34, 7409–19 (1995).PubMedCrossRefGoogle Scholar
  46. 46.
    E. Nogales and H. W. Wang, Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol 18, 179–84 (2006).PubMedCrossRefGoogle Scholar
  47. 47.
    E. Nogales, and H. W. Wang, Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives, Curr Opin Struct Biol 16, 221–9 (2006).PubMedCrossRefGoogle Scholar
  48. 48.
    E. Nogales, H. W. Wang, and H. Niederstrasser, Tubulin rings: which way do they curve? Curr Opin Struct Biol 13, 256–61 (2003).PubMedCrossRefGoogle Scholar
  49. 49.
    A. Jordan, J. A. Hadfield, N. J. Lawrence, and A. T. McGown, Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle, Med Res Rev 18, 259–96 (1998).PubMedCrossRefGoogle Scholar
  50. 50.
    J. H. Nettles, H. Li, B. Cornett, J. M. Krahn, J. P. Snyder and K. H. Downing, The binding mode of epothilone A on alpha,beta-tubulin by electron crystallography. Science 305, 866–9 (2004).PubMedCrossRefGoogle Scholar
  51. 51.
    J. Jiminez-Barbero, A Canales, P. T. Northcote, R. M. Buey, M. M. Andreu and F. Diaz, NMR determination of the bioactive conformation of peloruside A bound to microtubules. J Am Chem Soc128, 8757–65 (2006).CrossRefGoogle Scholar
  52. 52.
    O. Pineda, J. Farràs, L. Maccari, F. Manetti, M. Bott and J. Vilarrasa, Computational comparison of microtubule-stabilising agents laulimalide and peloruside with taxol and colchicine. Bioorg Med Chem Lett 14, 4825–9 (2004).PubMedCrossRefGoogle Scholar
  53. 53.
    A. Mitra and D. Sept, Binding and interaction of dinitroanilines with apicomplexan and kinetoplastid alpha-tubulin, J Med Chem 49, 5226–31 (2006).PubMedCrossRefGoogle Scholar
  54. 54.
    N. S. Morrissette, A. Mitra, D. Sept, and L. D. Sibley, Dinitroanilines bind alpha-tubulin to disrupt microtubules, Mol Biol Cell 15, 1960–8 (2004).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Nakamura, K. Naoi, T. Shoji, and T. Hashimoto, Low concentrations of propyzamide and oryzalin alter microtubule dynamics in Arabidopsis epidermal cells, Plant Cell Physiol 45, 1330–4 (2004).PubMedCrossRefGoogle Scholar
  56. 56.
    E. Yamamoto, L. Zeng, and W. V. Baird, Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica, Plant Cell 10, 297–308 (1998).PubMedCrossRefGoogle Scholar
  57. 57.
    E. Yamamoto and W. V. Baird, Molecular characterization of four beta-tubulin genes from dinitroaniline susceptible and resistant biotypes of Eleusine indica, Plant Mol Biol 39, 45–61 (1999).PubMedCrossRefGoogle Scholar
  58. 58.
    L. Zeng, and W. V. Baird, Inheritance of resistance to anti-microtubule dinitroaniline herbicides in an “intermediate” resistant biotype of Eleusine indica (Poaceae), Am J Bot 86, 940 (1999).PubMedCrossRefGoogle Scholar
  59. 59.
    R. G. Anthony, T. R. Waldin, J. A. Ray, S. W. Bright, and P. J. Hussey, Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin, Nature 393, 260–3 (1998).PubMedCrossRefGoogle Scholar
  60. 60.
    R. G. Anthony and P. J. Hussey, Dinitroaniline herbicide resistance and the microtubule cytoskeleton, Trends Plant Sci 4, 112–116 (1999).PubMedCrossRefGoogle Scholar
  61. 61.
    R. G. Anthony, S. Reichelt, and P. J. Hussey, Dinitroaniline herbicide-resistant transgenic tobacco plants generated by co-overexpression of a mutant alpha-tubulin and a beta-tubulin, Nat Biotechnol 17, 712–6 (1999).PubMedCrossRefGoogle Scholar
  62. 62.
    R. G. Anthony and P. J. Hussey, Double mutation in Eleusine indica alpha-tubulin increases the resistance of transgenic maize calli to dinitroaniline and phosphorothioamidate herbicides, Plant J 18, 669–74 (1999).PubMedCrossRefGoogle Scholar
  63. 63.
    C. Delye, Y. Menchari, S. Michel, and H. Darmency, Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail, Plant Physiol 136, 3920–32 (2004).PubMedCrossRefGoogle Scholar
  64. 64.
    S. W. James, L. P. Ranum, C. D. Silflow, and P. A. Lefebvre, Mutants resistant to anti-microtubule herbicides map to a locus on the uni linkage group in Chlamydomonas reinhardtii, Genetics 118, 141–7 (1988).PubMedGoogle Scholar
  65. 65.
    S. W. James, C. D. Silflow, M. D. Thompson, L. P. Ranum, and P. A. Lefebvre, Extragenic suppression and synthetic lethality among Chlamydomonas reinhardtii mutants resistant to anti-microtubule drugs, Genetics 122, 567–77 (1989).PubMedGoogle Scholar
  66. 66.
    S. W. James and P. A. Lefebvre, Isolation and characterization of dominant, pleiotropic drug-resistance mutants in Chlamydomonas reinhardtii, Curr Genet 15, 443–52 (1989).PubMedCrossRefGoogle Scholar
  67. 67.
    S. W. James, C. D. Silflow, P. Stroom, and P. A. Lefebvre, A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides, J Cell Sci 106 ( Pt 1), 209–18 (1993).PubMedGoogle Scholar
  68. 68.
    F. G. Lux III and S. K. Dutcher, Genetic interactions at the FLA10 locus: suppressors and synthetic phenotypes that affect the cell cycle and flagellar function in Chlamydomonas reinhardtii, Genetics 128, 549–61 (1991).PubMedGoogle Scholar
  69. 69.
    M. J. Schibler and B. Huang, The colR4 and colR15 beta-tubulin mutations in Chlamydomonas reinhardtii confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability, J Cell Biol 113, 605–14 (1991).PubMedCrossRefGoogle Scholar
  70. 70.
    C. D. Silflow and J. L. Rosenbaum, Multiple alpha- and beta-tubulin genes in Chlamydomonas and regulation of tubulin mRNA levels after deflagellation, Cell 24, 81–8 (1981).PubMedCrossRefGoogle Scholar
  71. 71.
    C. Ma, C. Li, L. Ganesan, J. Oak, S. Tsai, D. Sept and N. S. Morrissette, Mutations in Alpha-Tubulin Confer Dinitroaniline Resistance at a Cost to Microtubule Function. Mol Biol Cell 18, 4711–20 (2007).PubMedCrossRefGoogle Scholar
  72. 72.
    N. Morrissette, in Toxoplasma molecular and cellular biology, edited by J. Ajioka, and D. Soldati (Horizon Press, Norfolk, UK, 2007), pp. 507–522.Google Scholar
  73. 73.
    K. Hu, D. S. Roos, and J. M. Murray, A novel polymer of tubulin forms the conoid of Toxoplasma gondii, J Cell Biol 156, 1039–50 (2002).PubMedCrossRefGoogle Scholar
  74. 74.
    N. S. Morrissette and L. D. Sibley, Cytoskeleton of apicomplexan parasites, Microbiol Mol Biol Rev 66, 21–38 (2002).PubMedCrossRefGoogle Scholar
  75. 75.
    N. D. Levene, The protozoan phylum Apicomplexa (CRC Press, Boca Raton, FL, 1988).Google Scholar
  76. 76.
    H. Li, D. DeRosier, W. Nicholson, E. Nogales, and K. Downing, Microtubule structure at 8 a resolution, Structure (Camb) 10, 1317 (2002).CrossRefGoogle Scholar
  77. 77.
    K. L. Richards, K. R. Anders, E. Nogales, K. Schwartz, K. H. Downing and D. Botstein, Structure-function relationships in yeast tubulins. Mol Biol Cell 11, 1887–903 (2000).PubMedGoogle Scholar
  78. 78.
    R. A. Reijo, E. M. Cooper, G. J. Beagle, and T. C. Huffaker, Systematic mutational analysis of the yeast beta-tubulin gene, Mol Biol Cell5, 29–43 (1994).PubMedGoogle Scholar
  79. 79.
    M. Hari, Y. Wang, S. Veeraraghavan, and F. Cabral, Mutations in alpha- and beta-tubulin that stabilize microtubules and confer resistance to colcemid and vinblastine, Mol Cancer Ther 2, 597–605 (2003).PubMedGoogle Scholar
  80. 80.
    J. D. Beinhauer, I. M. Hagan, J. H. Hegemann, and U. Fleig, Mal3, the fission yeast homologue of the human APC-interacting protein EB-1 is required for microtubule integrity and the maintenance of cell form, J Cell Biol 139, 717–28 (1997).PubMedCrossRefGoogle Scholar
  81. 81.
    K. Asakawa, K. Kume, M. Kanai, T. Goshima, K. Miyahara, S. Dhut, W. W. Tee, D. Hirata and T. Toda, The V260I mutation in fission yeast alpha-tubulin Atb2 affects microtubule dynamics and EB1-Mal3 localization and activates the Bub1 branch of the spindle checkpoint. Mol Biol Cell 17, 1421–35 (2006).PubMedCrossRefGoogle Scholar
  82. 82.
    L. M. Fohl and D. S. Roos, Fitness effects of DHFR-TS mutations associated with pyrimethamine resistance in apicomplexan parasites, Mol Microbiol50, 1319–27 (2003).PubMedCrossRefGoogle Scholar
  83. 83.
    C. I. Ma, J. Tran, C. Li, L. Ganesan, D. Wood and N. S. Morrissette, Secondary mutations correct fitness defects in Toxoplasma gondii with dinitroaniline resistance mutations, Genetics (in press; 2008).Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Naomi Morrissette
    • 1
  • David Sept
    • 2
  1. 1.Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineUSA
  2. 2.Department of Biomedical Engineering and the Center for Computational BiologyWashington UniversitySt. LouisUSA

Personalised recommendations