Environmental Aspects of Aquaculture

  • Kenneth D. Black
Part of the The International Library of Environmental, Agricultural and Food Ethics book series (LEAF, volume 17)

Scientifically defensible and transparent regulation of aquaculture is necessary to protect the marine environment, ensure the supply of environmental services for all users, and promote the adoption of best environmental practices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGJ, Tacon, 2005. State of information on salmon aquaculture feed and the environment. Salmon Aquaculture Dialogue, pp. 81. www.worldwildlife.org/what/globalmarkets/aquaculture/ WWFBinaryitem8840.pdfGoogle Scholar
  2. Alderman, D. J. 2002. Trends in therapy and prophylaxis 1991–2001. Bulletin of the European Association of Fish Pathologists 22: 117–125.Google Scholar
  3. Black, K. D. 2001. Sustainability of aquaculture. In Environmental Impacts of Aquaculture, (ed. K. D. Black), pp. 199–212. Sheffield Academic Press, Sheffield.Google Scholar
  4. Black, K. D., Cook, E. J., Jones, K. J., Kelly, M. S., Leakey, R. J., Nickell, T. D., Sayer, M. D. J., Tett, P. and Willis, K. J. 2002. Review and Synthesis of the Environmental Impacts of Aquaculture. Scottish Executive Central Research Unit, Edinburgh. http:// www.scotland.gov.uk/cru/kd01/green/reia.pdf.
  5. Black, K. D., Blackstock, J., Cromey, C. J., Duncan, J., Gee, M., Gillibrand, P., Needham, H., Nickell, T. D., Pearson, T. H., Powell, H., Sammes, P., Somerfield, P., Walsham, P., Webster, L. and Willis, K. 2005. The ecological effects of sea lice treatment agents, p. 286. Scottish Association for Marine Science, Oban. www.sams.ac.uk/research/coastal%20imapcts/ecol.htm.Google Scholar
  6. Brooks, K. M. and Mahnken, C. V. W. 2003. Interactions of Atlantic salmon in the Pacific Northwest environment III. Accumulation of zinc and copper. Fisheries Research 62: 295–305.CrossRefGoogle Scholar
  7. Brooks, K. M., Stierns, A. R., Mahnken, C. V. W. and Blackburn, D. B. 2003. Chemical and biological remediation of the benthos near Atlantic salmon farms. Aquaculture 219: 355–377.CrossRefGoogle Scholar
  8. Brooks, K. M., Stierns, A. R. and Backman, C. 2004. Seven year remediation study at the Carrie Bay Atlantic salmon (Salmo salar) farm in the Broughton Archipelago, British Columbia, Canada. Aquaculture 239: 81–123.CrossRefGoogle Scholar
  9. Capone, D. G., Weston, D. P., Miller, V. and Shoemaker, C. 1996. Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145: 55–75.CrossRefGoogle Scholar
  10. Chopin, T., Buschmann, A. H., Halling, C., Troall, M., Kautsky, N., Neori, A., Kraemer, G. P., Zertuche-Gonzalez, J. A., Yarish, C. and Neefus, C. 2001. Integrating seaweeds into marine aquaculture systems: a key towards sustainability. Journal of Phycology 37: 975–986.CrossRefGoogle Scholar
  11. Cook, E. J. and Kelly, M. S. 2007. Enhanced production of the sea urchin Paracentrotus lividus in integrated open-water cultivation with Atlantic salmon Salmo salar. Aquaculture 273: 573–585.CrossRefGoogle Scholar
  12. Cromey, C. J., Nickell, T. D. and Black, K. D. 2002a. DEPOMOD – modelling the deposition and biological effects of waste solids from marine cage farms. Aquaculture 214: 211–239.CrossRefGoogle Scholar
  13. Cromey, C. J., Nickell, T. D., Black, K. D., Provost, P. G. and Griffiths, C. R. 2002b. Validation of a fish farm waste resuspension model by use of a particulate tracer discharged from a point source in a coastal environment. Estuaries 25: 916–929.CrossRefGoogle Scholar
  14. Dean, R. J., Shimmield, T. M., Black, K. D. 2007. Copper, zinc and cadmium in marine cage fish farm sediments: an extensive survey. Environmental Pollution 145: 84–95.PubMedCrossRefGoogle Scholar
  15. Findlay, R. H. and Watling, L. 1997. Prediction of benthic impact for salmon net-pens based on the balance of benthic oxygen supply and demand. Marine Ecology Progress Series 155: 147–157.CrossRefGoogle Scholar
  16. Folke, C., Kautsky, N. and Troell, M. 1994. The costs of eutrophication from salmon farming – implications for policy. Journal of Environmental Management 40: 173–182.CrossRefGoogle Scholar
  17. Folke, C., Kautsky, N. and Troell, M. 1997. Salmon farming in context: response. Journal of Environmental Management 50: 95–103.CrossRefGoogle Scholar
  18. Furness, B. W. 1996. Interactions between seabirds and aquaculture in sea lochs. In Aquaculture and Sea Lochs., (ed. K. D. Black), pp. 50–55. The Scottish Association for Marine Science, Oban.Google Scholar
  19. Gowen, R. J. and Bradbury, N. B. 1987. The ecological impact of salmonid farming in coastal waters: a review. Oceanography and Marine Biology Annual Reviews 25: 563–575.Google Scholar
  20. Hall, P. O. J., Holby, O., Kollberg, S. and Samuelsson, M. O. 1992. Chemical fluxes and mass balances in a marine fish cage farm. 4. Nitrogen. Marine Ecology Progress Series 89: 81–91.CrossRefGoogle Scholar
  21. Hall-Spencer, J., White, N., Gillespie, E., Gillham, K. and Foggo, A. 2006. Impact of fish farms on maerl beds in strongly tidal areas. Marine Ecology-Progress Series 326: 1–9.CrossRefGoogle Scholar
  22. Handy, R. D. and Poxton, M. G. 1993. Nitrogen pollution in mariculture – toxicity and excretion of nitrogenous compounds by marine fish. Reviews in Fish Biology and Fisheries 3: 205–241.CrossRefGoogle Scholar
  23. Heilskov, A. C. and Holmer, M. 2001. Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. Ices Journal of Marine Science 58: 427–434.CrossRefGoogle Scholar
  24. Heuch, P. A. and Mo, T. A. 2001. A model of salmon louse production in Norway: effects of increasing salmon production and public management measures. Diseases of Aquatic Organisms 45: 145–152.PubMedCrossRefGoogle Scholar
  25. Heuch, P. A., Revie, C. W. and Gettinby, G. 2003. A comparison of epidemiological patterns of salmon lice, Lepeophtheirus salmonis, infections on farmed Atlantic salmon, Salmo salar L., in Norway and Scotland. Journal of Fish Diseases 26: 539–551.PubMedCrossRefGoogle Scholar
  26. Holby, O. and Hall, P. O. J. 1991. Chemical fluxes and mass balances in a marine fish cage farm. 2. Phosphorus. Marine Ecology Progress Series 70: 263–272.CrossRefGoogle Scholar
  27. Holmer, M. and Kristensen, E. 1992. Impact of marine fish cage farming on metabolism and sulphate reduction of underlying sediments. Marine Ecology Progress Series 80: 191–201.CrossRefGoogle Scholar
  28. Johnston, D. W. 2002. The effect of acoustic harassment devices on harbour porpoises (Phocoena phocoena) in the Bay of Fundy, Canada. Biological Conservation, 108: 113–118.CrossRefGoogle Scholar
  29. Kaiser, M. J., Laing, I., Utting, S. D. and Burnell, G. M. 1998. Environmental impacts of bivalve mariculture. Journal of Shellfish Research 17: 59–66.Google Scholar
  30. Lepper, P. A., Turner, V. L. G. Goodson, A. D. and Black., K. D. 2004. Source levels and spectra emitted by three commercial aquaculture anti-predation devices, Seventh European Conference on Underwater Acoustics 5–8 July, Delft, The Netherlands.Google Scholar
  31. McGinnity, P., Prodohl, P., Ferguson, K., Hynes, R., O’Maoileidigh, N., Baker, N., Cotter, D., O’Hea, B., Cooke, D., Rogan, G., Taggart, J. and Cross, T. 2003. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proceedings of the Royal Society of London Series B-Biological Sciences 270: 2443–2450.CrossRefGoogle Scholar
  32. McKibben, M. A. and Hay, D. W. 2004. Distributions of planktonic sea lice larvae Lepeophtheirus salmonis in the inter-tidal zone in Loch Torridon, Western Scotland in relation to salmon farm production cycles. Aquaculture Research 35: 742–750.CrossRefGoogle Scholar
  33. Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M. J. and Izquierdo M. S. 2003. Vegetable lipid sources for gilthead seabream (Sparus aurata): effects on fish health. Aquaculture 225: 353–370.CrossRefGoogle Scholar
  34. Mourente, G. and Dick, J. R. 2002. Influence of partial substitution of dietary fish oil by vegetable oils on the metabolism of 1-C-14 18: 3n-3 in isolated hepatocytes of European sea bass (Dicentrarchus labrax L.). Fish Physiology and Biochemistry 26: 297–308.CrossRefGoogle Scholar
  35. Mourente, G., Good, J. E. and Bell, J. G. 2005. Partial substitution of fish oil with rapeseed, linseed and olive oils in diets for European sea bass (Dicentrarchus labrax L.): effects on flesh fatty acid composition, plasma prostaglandins E-2 and F-2 alpha, immune function and effectiveness of a fish oil finishing diet. Aquaculture Nutrition 11: 25–40.CrossRefGoogle Scholar
  36. Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., Folke, C., Lubchenco, J., Mooney, H. and Troell, M. 2000. Effect of aquaculture on world fish supplies. Nature 405: 1017–1024.PubMedCrossRefGoogle Scholar
  37. Opstvedt, J., Aksnes, A., Hope, B. and Pike, I. H. 2003. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins. Aquaculture 221: 365–379.CrossRefGoogle Scholar
  38. Pauly, D., Christensen, V., Guenette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., Watson, R. and Zeller, D. 2002. Towards sustainability in world fisheries. Nature 418: 689–695.PubMedCrossRefGoogle Scholar
  39. Pearson, T. H. and Rosenberg, R. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology Annual Reviews 16: 229–311.Google Scholar
  40. Pearson, T. H. and Black, K. D. 2001. The environmental impact of marine fish cage culture. In Environmental Impacts of Aquaculture, (ed. K. D. Black), pp. 1–31. Sheffield Academic Press, Sheffield.Google Scholar
  41. Penston, M. J., Mckibben, M. A., Hay, D. W. and Gillibrand, P. A. 2004. Observations on open-water densities of sea lice larvae in Loch Shieldaig, Western Scotland. Aquaculture Research 35: 793–805.CrossRefGoogle Scholar
  42. Pereira, P. M. F., Black, K. D., Mclusky, D. S. and Nickell, T. D. 2004. Recovery of sediments after cessation of marine fish farm production. Aquaculture 235: 315–330.CrossRefGoogle Scholar
  43. Revie, C. W., Gettinby, G., Treasurer, J. W. and Rae, G. H. 2002. The epidemiology of the sea lice, Caligus elongatus Nordmann, in marine aquaculture of Atlantic salmon, Salmo salar L., in Scotland. Journal of Fish Diseases 25: 391–399.CrossRefGoogle Scholar
  44. Ross, B. P., Lien, J. and Furness, R. W. 2001. Use of underwater playback to reduce the impact of elders on mussel farms. Ices Journal of Marine Science 58: 517–524.CrossRefGoogle Scholar
  45. Sanderson, J. C., Cromey, C. J., Dring, M. J. and Kelly, M. S. 2008. Distribution of nutrients for seaweed cultivation around salmon cages at farm sites in north-west Scotland.Google Scholar
  46. Silvert, W. and Sowles, J. W. 1996. Modeling environmental impacts of marine finfish aquaculture. Journal of Applied Ichthyology 12: 75–81.CrossRefGoogle Scholar
  47. Silvert, W. and Cromey, C. J. 2001. Modelling impacts. In Environmental Impacts of Aquaculture, (ed. K. D. Black), p. 214. Sheffield Academic Press, Sheffield.Google Scholar
  48. Strain, P. and Hargrave, B. 2005. Salmon aquaculture, nutrient fluxes and ecosystem processes in southwestern New Branswick. In Environmental Effects of Marine Finfish Aquaculture. The Handbook of Environmental Chemistry (volume 5): Water Pollution, (ed. B. Hargrave). Springer Verlag.Google Scholar
  49. Troell, M., Kautsky, N. and Folke, C. 1999a. Applicability of integrated coastal aquaculture systems. Ocean & Coastal Management 42: 63–69.CrossRefGoogle Scholar
  50. Troell, M., Ronnback, P., Halling, C., Kautsky, N. and Buschmann, A. 1999b. Ecological engineering in aquaculture: use of seaweeds for removing nutrients from intensive mariculture. Journal of Applied Psychology 11: 89–97.Google Scholar
  51. Whitmarsh, D. J., Cook, E. J. and Black, K. D. (2006). Searching for sustainability in aquaculture: an investigation into the economic prospects for an integrated salmon-mussel production system. Marine Policy 30: 293–298.CrossRefGoogle Scholar
  52. Willis, K. J., Gillibrand, P.A., Cromey, C. J. and Black, K. D. (2005). Sea lice treatments at a salmon farm have no adverse effects on zooplankton communities: a case study. Marine Pollution Bulletin 50: 806–816.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kenneth D. Black
    • 1
  1. 1.Ecology Department, Scottish Association for Marine ScienceDunstaffnage Marine LaboratoryObanScotland, UK

Personalised recommendations