Advertisement

Fatty Acid Synthase Activity in Tumor Cells

  • Joy L. Little
  • Steven J. Kridel
Part of the Subcellular Biochemistry book series (SCBI, volume 49)

Abstract

While normal tissues are tightly regulated by nutrition and a carefully balanced system of glycolysis and fatty acid synthesis, tumor cells are under significant evolutionary pressure to bypass many of the checks and balances afforded normally. Cancer cells have high energy expenditure from heightened proliferation and metabolism and often show increased lipogenesis. Fatty acid synthase (FASN), the enzyme responsible for catalyzing the ultimate steps of fatty acid synthesis in cells, is expressed at high levels in tumor cells and is mostly absent in corresponding normal cells. Because of the unique expression profile of FASN, there is considerable interest not only in understanding its contribution to tumor cell growth and proliferation, but also in developing inhibitors that target FASN specifically as an anti-tumor modality. Pharmacological blockade of FASN activity has identified a pleiotropic role for FASN in mediating aspects of proliferation, growth and survival. As a result, a clearer understanding of the role of FASN in tumor cells has been developed.

Keywords

Cancer Fatty acid synthase Lipogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Elheiga, L., Matzuk, M. M., Kordari, P., Oh, W., Shaikenov, T., Gu, Z. and Wakil, S. J., Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal, Proc Natl Acad Sci USA 102 (2005) 12011–12016.PubMedCrossRefGoogle Scholar
  2. Adams, C. M., Reitz, J., De Brabander, J. K., Feramisco, J. D., Li, L., Brown, M. S. and Goldstein, J. L., Cholesterol and 25-Hydroxycholesterol Inhibit Activation of SREBPs by Different Mechanisms, Both Involving SCAP and Insigs, J Biol Chem 279 (2004) 52772–52780.PubMedCrossRefGoogle Scholar
  3. Alli, P. M., Pinn, M. L., Jaffee, E. M., McFadden, J. M. and Kuhajda, F. P., Fatty acid synthase inhibitors are chemopreventive for mammary cancer in neu-N transgenic mice, Oncogene 24 (2005) 39–46.PubMedCrossRefGoogle Scholar
  4. Alo, P. L., Amini, M., Piro, F., Pizzuti, L., Sebastiani, V., Botti, C., Murari, R., Zotti, G. and Di Tondo, U., Immunohistochemical expression and prognostic significance of fatty acid synthase in pancreatic carcinoma, Anticancer Res 27 (2007) 2523–2527.PubMedGoogle Scholar
  5. Alo, P. L., Galati, G. M., Sebastiani, V., Ricci, F., Visca, P., Mariani, L., Romagnoli, F., Lombardi, G. and Tondo, U. D., Fatty acid synthase expression in Paget's disease of the vulva, Int J Gynecol Pathol 24 (2005) 404–408.PubMedCrossRefGoogle Scholar
  6. Alo, P. L., Visca, P., Framarino, M. L., Botti, C., Monaco, S., Sebastiani, V., Serpieri, D. E. and Di Tondo, U., Immunohistochemical study of fatty acid synthase in ovarian neoplasms, Oncol Rep 7 (2000) 1383–1388.PubMedGoogle Scholar
  7. Alo, P. L., Visca, P., Marci, A., Mangoni, A., Botti, C. and Di Tondo, U., Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients, Cancer 77 (1996) 474–482.PubMedCrossRefGoogle Scholar
  8. Alo, P. L., Visca, P., Mazzaferro, S., Serpieri, D. E., Mangoni, A., Botti, C., Monaco, S., Carboni, M., Zaraca, F., Trombetta, G. and Di Tondo, U., Immunohistochemical study of fatty acid synthase, Ki67, proliferating cell nuclear antigen, and p53 expression in hyperplastic parathyroids, Ann Diagn Pathol 3 (1999a) 287–293.CrossRefGoogle Scholar
  9. Alo, P. L., Visca, P., Trombetta, G., Mangoni, A., Lenti, L., Monaco, S., Botti, C., Serpieri, D. E. and Di Tondo, U., Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas, Tumori 85 (1999b) 35–40.CrossRefGoogle Scholar
  10. Amy, C. M., Williams-Ahlf, B., Naggert, J. and Smith, S., Molecular cloning of the mammalian fatty acid synthase gene and identification of the promoter region, Biochem J 271 (1990) 675–679.PubMedGoogle Scholar
  11. Bandyopadhyay, S., Pai, S. K., Watabe, M., Gross, S. C., Hirota, S., Hosobe, S., Tsukada, T., Miura, K., Saito, K., Markwell, S. J., Wang, Y., Huggenvik, J., Pauza, M. E., Iiizumi, M. and Watabe, K., FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis, Oncogene 24 (2005) 5389–5395.PubMedCrossRefGoogle Scholar
  12. Bandyopadhyay, S., Zhan, R., Wang, Y., Pai, S. K., Hirota, S., Hosobe, S., Takano, Y., Saito, K., Furuta, E., Iiizumi, M., Mohinta, S., Watabe, M., Chalfant, C. and Watabe, K., Mechanism of Apoptosis Induced by the Inhibition of Fatty Acid Synthase in Breast Cancer Cells, Cancer Res 66 (2006) 5934–5940.PubMedCrossRefGoogle Scholar
  13. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C. and Thompson, C. B., ATP citrate lyase is an important component of cell growth and transformation, Oncogene 24 (2005) 6314–6322.PubMedCrossRefGoogle Scholar
  14. Beckers, A., Organe, S., Timmermans, L., Scheys, K., Peeters, A., Brusselmans, K., Verhoeven, G. and Swinnen, J. V., Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells, Cancer Res 67 (2007) 8180–8187.PubMedCrossRefGoogle Scholar
  15. Bennett, M. K., Lopez, J. M., Sanchez, H. B. and Osborne, T. F., Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways, J Biol Chem 270 (1995) 25578–25583.PubMedCrossRefGoogle Scholar
  16. Blanco-Aparicio, C., Renner, O., Leal, J. F. M. and Carnero, A., PTEN, more than the AKT pathway, Carcinogenesis 28 (2007) 1379–1386.PubMedCrossRefGoogle Scholar
  17. Brusselmans, K., De Schrijver, E., Verhoeven, G. and Swinnen, J. V., RNA Interference-Mediated Silencing of the Acetyl-CoA-Carboxylase-{alpha} Gene Induces Growth Inhibition and Apoptosis of Prostate Cancer Cells, Cancer Res 65 (2005) 6719–6725.PubMedCrossRefGoogle Scholar
  18. Buechler, K. F. and Rhoades, R. A., Fatty acid synthesis in the perfused rat lung, Biochim Biophys Acta 619 (1980) 186–195.PubMedGoogle Scholar
  19. Camassei, F. D., Cozza, R., Acquaviva, A., Jenkner, A., Rava, L., Gareri, R., Donfrancesco, A., Bosman, C., Vadala, P., Hadjistilianou, T. and Boldrini, R., Expression of the lipogenic enzyme fatty acid synthase (FAS) in retinoblastoma and its correlation with tumor aggressiveness, Invest Ophthalmol Vis Sci 44 (2003a) 2399–2403.CrossRefGoogle Scholar
  20. Camassei, F. D., Jenkner, A., Rava, L., Bosman, C., Francalanci, P., Donfrancesco, A., Alo, P. L. and Boldrini, R., Expression of the lipogenic enzyme fatty acid synthase (FAS) as a predictor of poor outcome in nephroblastoma: an interinstitutional study, Med Pediatr Oncol 40 (2003b) 302–308.CrossRefGoogle Scholar
  21. Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M. and Joulin, V., Acetyl-CoA Carboxylase {alpha} Is Essential to Breast Cancer Cell Survival, Cancer Res 66 (2006) 5287–5294.PubMedCrossRefGoogle Scholar
  22. Chakravarthy, M. V., Pan, Z., Zhu, Y., Tordjman, K., Schneider, J. G., Coleman, T., Turk, J. and Semenkovich, C. F., "New" hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis, Cell Metab 1 (2005) 309–322.PubMedCrossRefGoogle Scholar
  23. Chakravarthy, M. V., Zhu, Y., Lopez, M., Yin, L., Wozniak, D. F., Coleman, T., Hu, Z., Wolfgang, M., Vidal-Puig, A., Lane, M. D. and Semenkovich, C. F., Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis, J Clin Invest 117 (2007) 2539–2552.PubMedCrossRefGoogle Scholar
  24. Chalbos, D., Chambon, M., Ailhaud, G. and Rochefort, H., Fatty acid synthetase and its mRNA are induced by progestins in breast cancer cells, J Biol Chem 262 (1987) 9923–9926.PubMedGoogle Scholar
  25. Chang, Y., Wang, J., Lu, X., Thewke, D. P. and Mason, R. J., KGF induces lipogenic genes through a PI3K and JNK/SREBP-1 pathway in H292 cells, J Lipid Res 46 (2005) 2624–2635.PubMedCrossRefGoogle Scholar
  26. Chirala, S. S., Chang, H., Matzuk, M., Abu-Elheiga, L., Mao, J., Mahon, K., Finegold, M. and Wakil, S. J., Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero, Proc Natl Acad Sci USA 100 (2003) 6358–6363.PubMedCrossRefGoogle Scholar
  27. Conde, E., Suarez-Gauthier, A., Garcia-Garcia, E., Lopez-Rios, F., Lopez-Encuentra, A., Garcia-Lujan, R., Morente, M., Sanchez-Verde, L. and Sanchez-Cespedes, M., Specific pattern of LKB1 and phospho-acetyl-CoA carboxylase protein immunostaining in human normal tissues and lung carcinomas, Hum Pathol 38 (2007) 1351–1360.PubMedCrossRefGoogle Scholar
  28. De Schrijver, E., Brusselmans, K., Heyns, W., Verhoeven, G. and Swinnen, J. V., RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells, Cancer Res 63 (2003) 3799–3804.PubMedGoogle Scholar
  29. Deberardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B., Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proc Natl Acad Sci USA 104 (2007) 19345–19350.PubMedCrossRefGoogle Scholar
  30. Egner, R., Thumm, M., Straub, M., Simeon, A., Schuller, H. J. and Wolf, D. H., Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae, J Biol Chem 268 (1993) 27269–27276.PubMedGoogle Scholar
  31. Epstein, J. I., Carmichael, M. and Partin, A. W., OA-519 (fatty acid synthase) as an independent predictor of pathologic state in adenocarcinoma of the prostate, Urology 45 (1995) 81–86.PubMedCrossRefGoogle Scholar
  32. Foufelle, F., Gouhot, B., Pegorier, J. P., Perdereau, D., Girard, J. and Ferre, P., Glucose stimulation of lipogenic enzyme gene expression in cultured white adipose tissue. A role for glucose 6-phosphate, J Biol Chem 267 (1992) 20543–20546.PubMedGoogle Scholar
  33. Freeman, M. R., Cinar, B., Kim, J., Mukhopadhyay, N. K., Di Vizio, D., Adam, R. M. and Solomon, K. R., Transit of hormonal and EGF receptor-dependent signals through cholesterol-rich membranes, Steroids 72 (2007) 210–217.PubMedCrossRefGoogle Scholar
  34. Freeman, M. R., Cinar, B. and Lu, M. L., Membrane rafts as potential sites of nongenomic hormonal signaling in prostate cancer, Trends Endocrinol Metabol 16 (2005) 273–279.CrossRefGoogle Scholar
  35. Fukuda, H., Iritani, N., Sugimoto, T. and Ikeda, H., Transcriptional regulation of fatty acid synthase gene by insulin/glucose, polyunsaturated fatty acid and leptin in hepatocytes and adipocytes in normal and genetically obese rats, Eur J Biochem 260 (1999) 505–511.PubMedCrossRefGoogle Scholar
  36. Funabashi, H., Kawaguchi, A., Tomoda, H., Omura, S., Okuda, S. and Iwasaki, S., Binding site of cerulenin in fatty acid synthetase, J Biochem (Tokyo) 105 (1989) 751–755.Google Scholar
  37. Furuya, Y., Akimoto, S., Yasuda, K. and Ito, H., Apoptosis of androgen-independent prostate cell line induced by inhibition of fatty acid synthesis, Anticancer Res 17 (1997) 4589–4593.PubMedGoogle Scholar
  38. Gabrielson, E. W., Pinn, M. L., Testa, J. R. and Kuhajda, F. P., Increased fatty acid synthase is a therapeutic target in mesothelioma, Clin Cancer Res 7 (2001) 153–157.PubMedGoogle Scholar
  39. Gansler, T. S., Hardman, W., 3rd, Hunt, D. A., Schaffel, S. and Hennigar, R. A., Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival, Hum Pathol 28 (1997) 686–692.PubMedCrossRefGoogle Scholar
  40. Gao, Y., Lin, L. P., Zhu, C. H., Chen, Y., Hou, Y. T. and Ding, J., Growth arrest induced by C75, A fatty acid synthase inhibitor, was partially modulated by p38 MAPK but not by p53 in human hepatocellular carcinoma, Cancer Biol Ther 5 (2006) 978–985.PubMedGoogle Scholar
  41. Graner, E., Tang, D., Rossi, S., Baron, A., Migita, T., Weinstein, L. J., Lechpammer, M., Huesken, D., Zimmermann, J., Signoretti, S. and Loda, M., The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer, Cancer Cell 5 (2004) 253–261.PubMedCrossRefGoogle Scholar
  42. Harada, N., Oda, Z., Hara, Y., Fujinami, K., Okawa, M., Ohbuchi, K., Yonemoto, M., Ikeda, Y., Ohwaki, K., Aragane, K., Tamai, Y. and Kusunoki, J., Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice, Mol Cell Biol 27 (2007) 1881–1888.PubMedCrossRefGoogle Scholar
  43. Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., Hingorani, S. R., Tuveson, D. A. and Thompson, C. B., ATP citrate lyase inhibition can suppress tumor cell growth, Cancer Cell 8 (2005) 311–321.PubMedCrossRefGoogle Scholar
  44. Heemers, H., Maes, B., Foufelle, F., Heyns, W., Verhoeven, G. and Swinnen, J. V., Androgens stimulate lipogenic gene expression in prostate cancer cells by activation of the sterol regulatory element-binding protein cleavage activating protein/sterol regulatory element-binding protein pathway, Mol Endocrinol 15 (2001) 1817–1828.PubMedCrossRefGoogle Scholar
  45. Heemers, H., Vanderhoydonc, F., Heyns, W., Verhoeven, G. and Swinnen, J. V., Progestins and androgens increase expression of Spot 14 in T47-D breast tumor cells, Biochem Biophys Res Commun 269 (2000) 209–212.PubMedCrossRefGoogle Scholar
  46. Heemers, H., Vanderhoydonc, F., Roskams, T., Shechter, I., Heyns, W., Verhoeven, G. and Swinnen, J. V., Androgens stimulate coordinated lipogenic gene expression in normal target tissues in vivo, Mol Cell Endocrinol 205 (2003) 21–31.PubMedCrossRefGoogle Scholar
  47. Heiligtag, S. J., Bredehorst, R. and David, K. A., Key role of mitochondria in cerulenin-mediated apoptosis, Cell Death Differ 9 (2002) 1017–1025.PubMedCrossRefGoogle Scholar
  48. Hennigar, R. A., Pochet, M., Hunt, D. A., Lukacher, A. E., Venema, V. J., Seal, E. and Marrero, M. B., Characterization of fatty acid synthase in cell lines derived from experimental mammary tumors, Biochim Biophys Acta 1392 (1998) 85–100.PubMedGoogle Scholar
  49. Hillgartner, F. B., Salati, L. M. and Goodridge, A. G., Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis, Physiol Rev 75 (1995) 47–76.PubMedGoogle Scholar
  50. Ho, T. S., Ho, Y. P., Wong, W. Y., Chi-Ming Chiu, L., Wong, Y. S. and Eng-Choon Ooi, V., Fatty acid synthase inhibitors cerulenin and C75 retard growth and induce caspase-dependent apoptosis in human melanoma A-375 cells, Biomed Pharmacother 61 (2007) 578–587.PubMedCrossRefGoogle Scholar
  51. Innocenzi, D., Alo, P. L., Balzani, A., Sebastiani, V., Silipo, V., La Torre, G., Ricciardi, G., Bosman, C. and Calvieri, S., Fatty acid synthase expression in melanoma, J Cutan Pathol 30 (2003) 23–28.PubMedCrossRefGoogle Scholar
  52. Jackowski, S., Coordination of membrane phospholipid synthesis with the cell cycle, J Biol Chem 269 (1994) 3858–3867.PubMedGoogle Scholar
  53. Jakobsson, A., Westerberg, R. and Jacobsson, A., Fatty acid elongases in mammals: their regulation and roles in metabolism, Prog Lipid Res 45 (2006) 237–249.PubMedCrossRefGoogle Scholar
  54. Jayakumar, A., Tai, M. H., Huang, W. Y., al-Feel, W., Hsu, M., Abu-Elheiga, L., Chirala, S. S. and Wakil, S. J., Human fatty acid synthase: properties and molecular cloning, Proc Natl Acad Sci USA 92 (1995) 8695–8699.PubMedCrossRefGoogle Scholar
  55. Jensen, V., Ladekarl, M., Holm-Nielsen, P., Melsen, F. and Soerensen, F. B., The prognostic value of oncogenic antigen 519 (OA-519) expression and proliferative activity detected by antibody MIB-1 in node-negative breast cancer, J Pathol 176 (1995) 343–352.PubMedCrossRefGoogle Scholar
  56. Joseph, J. W., Odegaard, M. L., Ronnebaum, S. M., Burgess, S. C., Muehlbauer, J., Sherry, A. D. and Newgard, C. B., Normal flux through ATP-citrate lyase or fatty acid synthase is not required for glucose-stimulated insulin secretion, J Biol Chem 282 (2007) 31592–31600.PubMedCrossRefGoogle Scholar
  57. Jump, D. B., Clarke, S. D., Thelen, A. and Liimatta, M., Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids, J Lipid Res 35 (1994) 1076–1084.PubMedGoogle Scholar
  58. Kapur, P., Rakheja, D., Roy, L. C. and Hoang, M. P., Fatty acid synthase expression in cutaneous melanocytic neoplasms, Mod Pathol 18 (2005) 1107–1112.PubMedCrossRefGoogle Scholar
  59. Kersten, S., Seydoux, J., Peters, J. M., Gonzalez, F. J., Desvergne, B. and Wahli, W., Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting, J Clin Invest 103 (1999) 1489–1498.PubMedCrossRefGoogle Scholar
  60. Knowles, L. M., Axelrod, F., Browne, C. D. and Smith, J. W., A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2, J Biol Chem 279 (2004) 30540–30545.PubMedCrossRefGoogle Scholar
  61. Kridel, S. J., Axelrod, F., Rozenkrantz, N. and Smith, J. W., Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity, Cancer Res 64 (2004) 2070–2075.PubMedCrossRefGoogle Scholar
  62. Kridel, S. J., Lowther, W. T. and Pemble, C. W., Fatty acid synthase inhibitors: new directions for oncology, Expert Opin Investig Drugs 16 (2007) 1817–1829.PubMedCrossRefGoogle Scholar
  63. Kuhajda, F. P., Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology, Nutrition 16 (2000) 202–208.PubMedCrossRefGoogle Scholar
  64. Kuhajda, F. P., Fatty acid synthase and cancer: new application of an old pathway, Cancer Res 66 (2006) 5977–5980.PubMedCrossRefGoogle Scholar
  65. Kuhajda, F. P., Jenner, K., Wood, F. D., Hennigar, R. A., Jacobs, L. B., Dick, J. D. and Pasternack, G. R., Fatty acid synthesis: a potential selective target for antineoplastic therapy, Proc Natl Acad Sci USA 91 (1994) 6379–6383.PubMedCrossRefGoogle Scholar
  66. Kuhajda, F. P., Katumuluwa, A. I. and Pasternack, G. R., Expression of haptoglobin-related protein and its potential role as a tumor antigen, Proc Natl Acad Sci USA 86 (1989a) 1188–1192.CrossRefGoogle Scholar
  67. Kuhajda, F. P., Piantadosi, S. and Pasternack, G. R., Haptoglobin-related protein (Hpr) epitopes in breast cancer as a predictor of recurrence of the disease, N Engl J Med 321 (1989b) 636–641.Google Scholar
  68. Kuhajda, F. P., Pizer, E. S., Li, J. N., Mani, N. S., Frehywot, G. L. and Townsend, C. A., Synthesis and antitumor activity of an inhibitor of fatty acid synthase, Proc Natl Acad Sci USA 97 (2000) 3450–3454.PubMedCrossRefGoogle Scholar
  69. Kumar-Sinha, C., Ignatoski, K. W., Lippman, M. E., Ethier, S. P. and Chinnaiyan, A. M., Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis, Cancer Res 63 (2003) 132–139.PubMedGoogle Scholar
  70. Kusakabe, T., Maeda, M., Hoshi, N., Sugino, T., Watanabe, K., Fukuda, T. and Suzuki, T., Fatty acid synthase is expressed mainly in adult hormone-sensitive cells or cells with high lipid metabolism and in proliferating fetal cells, J Histochem Cytochem 48 (2000) 613–622.PubMedGoogle Scholar
  71. Kusakabe, T., Nashimoto, A., Honma, K. and Suzuki, T., Fatty acid synthase is highly expressed in carcinoma, adenoma and in regenerative epithelium and intestinal metaplasia of the stomach, Histopathology 40 (2002) 71–79.PubMedCrossRefGoogle Scholar
  72. Lacasa, D., Le Liepvre, X., Ferre, P. and Dugail, I., Progesterone stimulates adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c gene expression. potential mechanism for the lipogenic effect of progesterone in adipose tissue, J Biol Chem 276 (2001) 11512–11516.PubMedCrossRefGoogle Scholar
  73. Li, J. N., Gorospe, M., Chrest, F. J., Kumaravel, T. S., Evans, M. K., Han, W. F. and Pizer, E. S., Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53, Cancer Res 61 (2001) 1493–1499.PubMedGoogle Scholar
  74. Little, J. L., Wheeler, F. B., Fels, D. R., Koumenis, C. and Kridel, S. J., Inhibition of fatty acid synthase induces endoplasmic reticulum stress in tumor cells, Cancer Res 67 (2007) 1262–1269.PubMedCrossRefGoogle Scholar
  75. Liu, X., Shi, Y., Giranda, V. L. and Luo, Y., Inhibition of the phosphatidylinositol 3-kinase/Akt pathway sensitizes MDA-MB468 human breast cancer cells to cerulenin-induced apoptosis, Mol Cancer Ther 5 (2006) 494–501.PubMedCrossRefGoogle Scholar
  76. Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett, G. V., Lane, M. D. and Kuhajda, F. P., Reduced Food Intake and Body Weight in Mice Treated with Fatty Acid Synthase Inhibitors, Science 288 (2000) 2379–2381.PubMedCrossRefGoogle Scholar
  77. Magana, M. M. and Osborne, T. F., Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter, J Biol Chem 271 (1996) 32689–32694.PubMedCrossRefGoogle Scholar
  78. Maier, T., Jenni, S. and Ban, N., Architecture of mammalian fatty acid synthase at 4.5 A resolution, Science 311 (2006) 1258–1262.PubMedCrossRefGoogle Scholar
  79. McGarry, J. D., Mills, S. E., Long, C. S. and Foster, D. W., Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat, Biochem J 214 (1983) 21–28.PubMedGoogle Scholar
  80. Menendez, J. A., Oza, B. P., Colomer, R. and Lupu, R., The estrogenic activity of synthetic progestins used in oral contraceptives enhances fatty acid synthase-dependent breast cancer cell proliferation and survival, Int J Oncol 26 (2005a) 1507–1515.Google Scholar
  81. Menendez, J. A., Vellon, L. and Lupu, R., Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene, Ann Oncol 16 (2005b) 1253–1267.CrossRefGoogle Scholar
  82. Menendez, J. A., Vellon, L., Mehmi, I., Oza, B. P., Ropero, S., Colomer, R. and Lupu, R., Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells, Proc Natl Acad Sci USA 101 (2004) 10715–10720.PubMedCrossRefGoogle Scholar
  83. Milgraum, L. Z., Witters, L. A., Pasternack, G. R. and Kuhajda, F. P., Enzymes of the fatty acid synthesis pathway are highly expressed in in situ breast carcinoma, Clin Cancer Res 3 (1997) 2115–2120.PubMedGoogle Scholar
  84. Moon, Y. S., Latasa, M. J., Griffin, M. J. and Sul, H. S., Suppression of fatty acid synthase promoter by polyunsaturated fatty acids, J Lipid Res 43 (2002) 691–698.PubMedGoogle Scholar
  85. Moreau, K., Dizin, E., Ray, H., Luquain, C., Lefai, E., Foufelle, F., Billaud, M., Lenoir, G. M. and Venezia, N. D., BRCA1 Affects Lipid Synthesis through Its Interaction with Acetyl-CoA Carboxylase, J Biol Chem 281 (2006) 3172–3181.PubMedCrossRefGoogle Scholar
  86. Moustaid, N., Beyer, R. S. and Sul, H. S., Identification of an insulin response element in the fatty acid synthase promoter, J Biol Chem 269 (1994) 5629–5634.PubMedGoogle Scholar
  87. Moustaid, N. and Sul, H. S., Regulation of expression of the fatty acid synthase gene in 3T3-L1 cells by differentiation and triiodothyronine, J Biol Chem 266 (1991) 18550–18554.PubMedGoogle Scholar
  88. Mulholland, D. J., Dedhar, S., Wu, H. and Nelson, C. C., PTEN and GSK3beta: key regulators of progression to androgen-independent prostate cancer, Oncogene 25 (2006) 329–337.PubMedCrossRefGoogle Scholar
  89. Myers, R. B., Oelschlager, D. K., Weiss, H. L., Frost, A. R. and Grizzle, W. E., Fatty acid synthase: an early molecular marker of progression of prostatic adenocarcinoma to androgen independence, J Urol 165 (2001) 1027–1032.PubMedCrossRefGoogle Scholar
  90. Nemoto, T., Terashima, S., Kogure, M., Hoshino, Y., Kusakabe, T., Suzuki, T. and Gotoh, M., Overexpression of fatty acid synthase in oesophageal squamous cell dysplasia and carcinoma, Pathobiology 69 (2001) 297–303.PubMedCrossRefGoogle Scholar
  91. Ogino, S., Brahmandam, M., Cantor, M., Namgyal, C., Kawasaki, T., Kirkner, G., Meyerhardt, J. A., Loda, M. and Fuchs, C. S., Distinct molecular features of colorectal carcinoma with signet ring cell component and colorectal carcinoma with mucinous component, Mod Pathol 19 (2006) 59–68.PubMedCrossRefGoogle Scholar
  92. Ogino, S., Kawasaki, T., Ogawa, A., Kirkner, G. J., Loda, M. and Fuchs, C. S., Fatty acid synthase overexpression in colorectal cancer is associated with microsatellite instability, independent of CpG island methylator phenotype, Hum Pathol 38 (2007) 842–849.PubMedCrossRefGoogle Scholar
  93. Ookhtens, M., Kannan, R., Lyon, I. and Baker, N., Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor, Am J Physiol Regul Integr Comp Physiol 247 (1984) R146–R153.Google Scholar
  94. Orita, H., Coulter, J., Lemmon, C., Tully, E., Vadlamudi, A., Medghalchi, S. M., Kuhajda, F. P. and Gabrielson, E., Selective inhibition of fatty acid synthase for lung cancer treatment, Clin Cancer Res 13 (2007) 7139–7145.PubMedGoogle Scholar
  95. Paulauskis, J. D. and Sul, H. S., Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells, J Biol Chem 263 (1988) 7049–7054.PubMedGoogle Scholar
  96. Pflug, B. R., Pecher, S. M., Brink, A. W., Nelson, J. B. and Foster, B. A., Increased fatty acid synthase expression and activity during progression of prostate cancer in the TRAMP model, Prostate 57 (2003) 245–254.PubMedCrossRefGoogle Scholar
  97. Pizer, E. S., Chrest, F. J., DiGiuseppe, J. A. and Han, W. F., Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines, Cancer Res 58 (1998a) 4611–4615.Google Scholar
  98. Pizer, E. S., Jackisch, C., Wood, F. D., Pasternack, G. R., Davidson, N. E. and Kuhajda, F. P., Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells, Cancer Res 56 (1996a) 2745–2747.Google Scholar
  99. Pizer, E. S., Kurman, R. J., Pasternack, G. R. and Kuhajda, F. P., Expression of fatty acid synthase is closely linked to proliferation and stromal decidualization in cycling endometrium, Int J Gynecol Pathol 16 (1997) 45–51.PubMedCrossRefGoogle Scholar
  100. Pizer, E. S., Lax, S. F., Kuhajda, F. P., Pasternack, G. R. and Kurman, R. J., Fatty acid synthase expression in endometrial carcinoma: correlation with cell proliferation and hormone receptors, Cancer 83 (1998b) 528–537.CrossRefGoogle Scholar
  101. Pizer, E. S., Pflug, B. R., Bova, G. S., Han, W. F., Udan, M. S. and Nelson, J. B., Increased fatty acid synthase as a therapeutic target in androgen-independent prostate cancer progression, Prostate 47 (2001) 102–110.PubMedCrossRefGoogle Scholar
  102. Pizer, E. S., Thupari, J., Han, W. F., Pinn, M. L., Chrest, F. J., Frehywot, G. L., Townsend, C. A. and Kuhajda, F. P., Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts, Cancer Res 60 (2000) 213–218.PubMedGoogle Scholar
  103. Pizer, E. S., Wood, F. D., Heine, H. S., Romantsev, F. E., Pasternack, G. R. and Kuhajda, F. P., Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer, Cancer Res 56 (1996b) 1189–1193.Google Scholar
  104. Porstmann, T., Griffiths, B., Chung, Y. L., Delpuech, O., Griffiths, J. R., Downward, J. and Schulze, A., PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP, Oncogene 24 (2005) 6465–6481.PubMedGoogle Scholar
  105. Rangan, V. S., Joshi, A. K. and Smith, S., Fatty acid synthase dimers containing catalytically active beta-ketoacyl synthase or malonyl/acetyltransferase domains in only one subunit can support fatty acid synthesis at the acyl carrier protein domains of both subunits, J Biol Chem 273 (1998) 34949–34953.PubMedCrossRefGoogle Scholar
  106. Rangan, V. S., Joshi, A. K. and Smith, S., Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro, Biochemistry 40 (2001) 10792–10799.PubMedCrossRefGoogle Scholar
  107. Rangan, V. S., Oskouian, B. and Smith, S., Identification of an inverted CCAAT box motif in the fatty-acid synthase gene as an essential element for modification of transcriptional regulation by cAMP, J Biol Chem 271 (1996) 2307–2312.PubMedCrossRefGoogle Scholar
  108. Rashid, A., Pizer, E. S., Moga, M., Milgraum, L. Z., Zahurak, M., Pasternack, G. R., Kuhajda, F. P. and Hamilton, S. R., Elevated expression of fatty acid synthase and fatty acid synthetic activity in colorectal neoplasia, Am J Pathol 150 (1997) 201–208.PubMedGoogle Scholar
  109. Resh, M. D., Trafficking and signaling by fatty-acylated and prenylated proteins, Nat Chem Biol 2 (2006) 584–590.PubMedCrossRefGoogle Scholar
  110. Rossi, S., Graner, E., Febbo, P., Weinstein, L., Bhattacharya, N., Onody, T., Bubley, G., Balk, S. and Loda, M., Fatty acid synthase expression defines distinct molecular signatures in prostate cancer, Mol Cancer Res 1 (2003) 707–715.PubMedGoogle Scholar
  111. Rufo, C., Teran-Garcia, M., Nakamura, M. T., Koo, S. H., Towle, H. C. and Clarke, S. D., Involvement of a unique carbohydrate-responsive factor in the glucose regulation of rat liver fatty-acid synthase gene transcription, J Biol Chem 276 (2001) 21969–21975.PubMedCrossRefGoogle Scholar
  112. Sabine, J. R., Abraham, S. and Chaikoff, I. L., Control of lipid metabolism in hepatomas: insensitivity of rate of fatty acid and cholesterol synthesis by mouse hepatoma BW7756 to fasting and to feedback control, Cancer Res 27 (1967) 793–799.PubMedGoogle Scholar
  113. Sakai, J., Nohturfft, A., Goldstein, J. L. and Brown, M. S., Cleavage of Sterol Regulatory Element-binding Proteins (SREBPs) at Site-1 Requires Interaction with SREBP Cleavage-activating Protein. Evidence from in vivo competition studies, J Biol Chem 273 (1998) 5785–5793.PubMedCrossRefGoogle Scholar
  114. Sampath, H. and Ntambi, J. M., The fate and intermediary metabolism of stearic acid, Lipids 40 (2005) 1187–1191.PubMedCrossRefGoogle Scholar
  115. Sebastiani, V., Visca, P., Botti, C., Santeusanio, G., Galati, G. M., Piccini, V., Capezzone de Joannon, B., Di Tondo, U. and Alo, P. L., Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma, Gynecol Oncol 92 (2004) 101–105.PubMedCrossRefGoogle Scholar
  116. Shah, U. S., Dhir, R., Gollin, S. M., Chandran, U. R., Lewis, D., Acquafondata, M. and Pflug, B. R., Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma, Hum Pathol 37 (2006) 401–409.PubMedCrossRefGoogle Scholar
  117. Shurbaji, M. S., Kalbfleisch, J. H. and Thurmond, T. S., Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer, Hum Pathol 27 (1996) 917–921.PubMedCrossRefGoogle Scholar
  118. Shurbaji, M. S., Kuhajda, F. P., Pasternack, G. R. and Thurmond, T. S., Expression of oncogenic antigen 519 (OA-519) in prostate cancer is a potential prognostic indicator, Am J Clin Pathol 97 (1992) 686–691.PubMedGoogle Scholar
  119. Silva, S. D., Perez, D. E., Alves, F. A., Nishimoto, I. N., Pinto, C. A. L., Kowalski, L. P. and Graner, E., ErbB2 and fatty acid synthase (FAS) expression in 102 squamous cell carcinomas of the tongue: Correlation with clinical outcomes, Oral Oncol (2008) doi:10.1016/j.oraloncology.2007.1006.1008.Google Scholar
  120. Smith, S., Architectural options for a fatty acid synthase, Science 311 (2006) 1251–1252.PubMedCrossRefGoogle Scholar
  121. Smith, S., Witkowski, A. and Joshi, A. K., Structural and functional organization of the animal fatty acid synthase, Prog Lipid Res 42 (2003) 289–317.PubMedCrossRefGoogle Scholar
  122. Swinnen, J. V., Brusselmans, K. and Verhoeven, G., Increased lipogenesis in cancer cells: new players, novel targets, Curr Opin Clin Nutr Metab Care 9 (2006) 358–365.PubMedCrossRefGoogle Scholar
  123. Swinnen, J. V., Esquenet, M., Goossens, K., Heyns, W. and Verhoeven, G., Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP, Cancer Res 57 (1997a) 1086–1090.Google Scholar
  124. Swinnen, J. V., Heemers, H., Deboel, L., Foufelle, F., Heyns, W. and Verhoeven, G., Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway, Oncogene 19 (2000a) 5173–5181.CrossRefGoogle Scholar
  125. Swinnen, J. V., Roskams, T., Joniau, S., Van Poppel, H., Oyen, R., Baert, L., Heyns, W. and Verhoeven, G., Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer, Int J Cancer 98 (2002) 19–22.PubMedCrossRefGoogle Scholar
  126. Swinnen, J. V., Ulrix, W., Heyns, W. and Verhoeven, G., Coordinate regulation of lipogenic gene expression by androgens: evidence for a cascade mechanism involving sterol regulatory element binding proteins, Proc Natl Acad Sci USA 94 (1997b) 12975–12980.CrossRefGoogle Scholar
  127. Swinnen, J. V., Van Veldhoven, P. P., Timmermans, L., De Schrijver, E., Brusselmans, K., Vanderhoydonc, F., Van de Sande, T., Heemers, H., Heyns, W. and Verhoeven, G., Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains, Biochem Biophys Res Commun 302 (2003) 898–903.PubMedCrossRefGoogle Scholar
  128. Swinnen, J. V., Vanderhoydonc, F., Elgamal, A. A., Eelen, M., Vercaeren, I., Joniau, S., Van Poppel, H., Baert, L., Goossens, K., Heyns, W. and Verhoeven, G., Selective activation of the fatty acid synthesis pathway in human prostate cancer, Int J Cancer 88 (2000b) 176–179.CrossRefGoogle Scholar
  129. Szutowicz, A., Kwiatkowski, J. and Angielski, S., Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast, Br J Cancer 39 (1979) 681–687.PubMedGoogle Scholar
  130. Takahiro, T., Shinichi, K. and Toshimitsu, S., Expression of fatty acid synthase as a prognostic indicator in soft tissue sarcomas, Clin Cancer Res 9 (2003) 2204–2212.PubMedGoogle Scholar
  131. Teran-Garcia, M., Adamson, A. W., Yu, G., Rufo, C., Suchankova, G., Dreesen, T. D., Tekle, M., Clarke, S. D. and Gettys, T. W., Polyunsaturated fatty acid suppression of fatty acid synthase (FASN): evidence for dietary modulation of NF-Y binding to the Fasn promoter by SREBP-1c, Biochem J 402 (2007) 591–600.PubMedCrossRefGoogle Scholar
  132. Thompson, B. J. and Smith, S., Biosynthesis of fatty acids by lactating human breast epithelial cells: an evaluation of the contribution to the overall composition of human milk fat, Pediatr Res 19 (1985) 139–143.PubMedCrossRefGoogle Scholar
  133. Thupari, J. N., Kim, E. K., Moran, T. H., Ronnett, G. V. and Kuhajda, F. P., Chronic C75 treatment of diet-induced obese mice increases fat oxidation and reduces food intake to reduce adipose mass, Am J Physiol Endocrinol Metab 287 (2004) E97–E104.PubMedCrossRefGoogle Scholar
  134. Thupari, J. N., Landree, L. E., Ronnett, G. V. and Kuhajda, F. P., C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity, Proc Natl Acad Sci USA 99 (2002) 9498–9502.PubMedGoogle Scholar
  135. Tian, W. X., Inhibition of fatty acid synthase by polyphenols, Curr Med Chem 13 (2006) 967–977.PubMedCrossRefGoogle Scholar
  136. Tu, Y., Thupari, J. N., Kim, E. K., Pinn, M. L., Moran, T. H., Ronnett, G. V. and Kuhajda, F. P., C75 alters central and peripheral gene expression to reduce food intake and increase energy expenditure, Endocrinology 146 (2005) 486–493.PubMedCrossRefGoogle Scholar
  137. Turyn, J., Schlichtholz, B., Dettlaff-Pokora, A., Presler, M., Goyke, E., Matuszewski, M., Kmiec, Z., Krajka, K. and Swierczynski, J., Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer, Horm Metab Res 35 (2003) 565–569.PubMedCrossRefGoogle Scholar
  138. Van de Sande, T., De Schrijver, E., Heyns, W., Verhoeven, G. and Swinnen, J. V., Role of the phosphatidylinositol 3'-kinase/PTEN/Akt kinase pathway in the overexpression of fatty acid synthase in LNCaP prostate cancer cells, Cancer Res 62 (2002) 642–646.PubMedGoogle Scholar
  139. Van de Sande, T., Roskams, T., Lerut, E., Joniau, S., Van Poppel, H., Verhoeven, G. and Swinnen, J. V., High-level expression of fatty acid synthase in human prostate cancer tissues is linked to activation and nuclear localization of Akt/PKB, J Pathol 206 (2005) 214–219.PubMedCrossRefGoogle Scholar
  140. Visca, P., Sebastiani, V., Botti, C., Diodoro, M. G., Lasagni, R. P., Romagnoli, F., Brenna, A., De Joannon, B. C., Donnorso, R. P., Lombardi, G. and Alo, P. L., Fatty acid synthase (FAS) is a marker of increased risk of recurrence in lung carcinoma, Anticancer Res 24 (2004) 4169–4173.PubMedGoogle Scholar
  141. Visca, P., Sebastiani, V., Pizer, E. S., Botti, C., De Carli, P., Filippi, S., Monaco, S. and Alo, P. L., Immunohistochemical expression and prognostic significance of FAS and GLUT1 in bladder carcinoma, Anticancer Res 23 (2003) 335–339.PubMedGoogle Scholar
  142. Volpe, J. J. and Marasa, J. C., Hormonal regulation of fatty acid synthetase, acetyl-CoA carboxylase and fatty acid synthesis in mammalian adipose tissue and liver, Biochim Biophys Acta 380 (1975) 454–472.PubMedGoogle Scholar
  143. Wakil, S. J., Fatty acid synthase, a proficient multifunctional enzyme, Biochemistry 28 (1989) 4523–4530.PubMedCrossRefGoogle Scholar
  144. Wakil, S. J., Stoops, J. K. and Joshi, V. C., Fatty acid synthesis and its regulation, Annu Rev Biochem 52 (1983) 537–579.PubMedCrossRefGoogle Scholar
  145. Wang, D. and Sul, H. S., Insulin stimulation of the fatty acid synthase promoter is mediated by the phosphatidylinositol 3-kinase pathway. Involvement of protein kinase B/Akt, J Biol Chem 273 (1998) 25420–25426.PubMedCrossRefGoogle Scholar
  146. Wang, H. Q., Altomare, D. A., Skele, K. L., Poulikakos, P. I., Kuhajda, F. P., Di Cristofano, A. and Testa, J. R., Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells, Oncogene 24 (2005) 3574–3582.PubMedCrossRefGoogle Scholar
  147. Wang, S., Gao, J., Lei, Q., Rozengurt, N., Pritchard, C., Jiao, J., Thomas, G. V., Li, G., Roy-Burman, P., Nelson, P. S., Liu, X. and Wu, H., Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer, Cancer Cell 4 (2003) 209–221.PubMedCrossRefGoogle Scholar
  148. Worgall, T. S., Sturley, S. L., Seo, T., Osborne, T. F. and Deckelbaum, R. J., Polyunsaturated Fatty Acids Decrease Expression of Promoters with Sterol Regulatory Elements by Decreasing Levels of Mature Sterol Regulatory Element-binding Protein, J Biol Chem 273 (1998) 25537–25540.PubMedCrossRefGoogle Scholar
  149. Xu, J., Nakamura, M. T., Cho, H. P. and Clarke, S. D., Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats, J Biol Chem 274 (1999) 23577–23583.PubMedCrossRefGoogle Scholar
  150. Yahagi, N., Shimano, H., Hasegawa, K., Ohashi, K., Matsuzaka, T., Najima, Y., Sekiya, M., Tomita, S., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K., Nagai, R., Ishibashi, S., Kadowaki, T., Makuuchi, M., Ohnishi, S., Osuga, J.-i. and Yamada, N., Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma, Eur J Cancer 41 (2005) 1316–1322.PubMedCrossRefGoogle Scholar
  151. Yang, N., Kays, J. S., Skillman, T. R., Burris, L., Seng, T. W. and Hammond, C., C75 [4-Methylene-2-octyl-5-oxo-tetrahydro-furan-3-carboxylic Acid] Activates Carnitine Palmitoyltransferase-1 in Isolated Mitochondria and Intact Cells without Displacement of Bound Malonyl CoA, J Pharmacol Exp Ther 312 (2005) 127–133.PubMedCrossRefGoogle Scholar
  152. Yang, Y. A., Han, W. F., Morin, P. J., Chrest, F. J. and Pizer, E. S., Activation of fatty acid synthesis during neoplastic transformation: role of mitogen-activated protein kinase and phosphatidylinositol 3-kinase, Exp Cell Res 279 (2002) 80–90.PubMedCrossRefGoogle Scholar
  153. Yeh, S., Lin, H.-K., Kang, H.-Y., Thin, T. H., Lin, M.-F. and Chang, C., From HER2/Neu signal cascade to androgen receptor and its coactivators: A novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells, Proc Natl Acad Sci USA 96 (1999) 5458–5463.PubMedCrossRefGoogle Scholar
  154. Yoon, S., Lee, M. Y., Park, S. W., Moon, J. S., Koh, Y. K., Ahn, Y. H., Park, B. W. and Kim, K. S., Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells, J Biol Chem 282 (2007) 26122–26131.PubMedCrossRefGoogle Scholar
  155. Zhao, W., Kridel, S., Thorburn, A., Kooshki, M., Little, J., Hebbar, S. and Robbins, M., Fatty acid synthase: a novel target for antiglioma therapy, Br J Cancer 95 (2006) 869–878.PubMedCrossRefGoogle Scholar
  156. Zhou, W., Han, W. F., Landree, L. E., Thupari, J. N., Pinn, M. L., Bililign, T., Kim, E. K., Vadlamudi, A., Medghalchi, S. M., El Meskini, R., Ronnett, G. V., Townsend, C. A. and Kuhajda, F. P., Fatty acid synthase inhibition activates AMP-activated protein kinase in SKOV3 human ovarian cancer cells, Cancer Res 67 (2007) 2964–2971.PubMedCrossRefGoogle Scholar
  157. Zhou, W., Simpson, P. J., McFadden, J. M., Townsend, C. A., Medghalchi, S. M., Vadlamudi, A., Pinn, M. L., Ronnett, G. V. and Kuhajda, F. P., Fatty Acid Synthase Inhibition Triggers Apoptosis during S Phase in Human Cancer Cells, Cancer Res 63 (2003) 7330–7337.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Joy L. Little
  • Steven J. Kridel
    • 1
  1. 1.Department of Cancer Biology and Comprehensive Cancer CenterWake Forest University School of Medicine, Medical Center BoulevardWinston-SalemUSA

Personalised recommendations